Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Leukemia Breast Cancers Suppressed by Single Protein

By BiotechDaily International staff writers
Posted on 02 Feb 2012
Targeting a single protein can help combat both breast cancers and leukemia, according to two new reports. The single protein, HSP90, acts as a chaperone to protect other cellular proteins.

The study’s findings were published online January 23, 2012, in the Journal of Experimental Medicine. A team of investigators led by Ute Moll from the University of Gottingen (Germany) discovered that suppressing HSP90 activity rendered normally protected proteins susceptible to attack and destruction. One of these proteins--called migration inhibitory factor--fuels the growth of breast tumors. HSP90 inhibitors slowed the growth of migration inhibitory factor (MIF)-expressing breast tumors in mice but had little effect on tumors lacking MIF.

HSP90 inhibitors also look promising for certain forms of leukemia, according to a study by David Weinstock and coworkers at the Dana-Farber Cancer Institute (Boston, MA, USA). They demonstrated that HSP90 inhibitors slowed the growth of leukemia driven by hyperactive versions of the enzyme JAK2 (Janus kinase 2), many of which become resistant to JAK2-blocking drugs. The HSP90 inhibitors delayed the growth of resistant leukemia cells in mice.

According to the scientists, this research suggests that HSP90 may represent a therapeutic target for a range of cancers.

Related Links:

University of Göttingen
Dana-Farber Cancer Institute





Channels

Genomics/Proteomics

view channel
Image: In mice, mitochondria (green) in healthy (left) and Mfn1-deficient heart muscle cells (center) are organized in a linear arrangement, but the organelles are enlarged and disorganized in Mfn2-deficient cells (right) (Photo courtesy of the Rockefeller Press).

Cell Biologists Find That Certain Mitochondrial Diseases Stem from Coenzyme Q10 Depletion

A team of German cell biologists has linked the development of certain mitochondrial-linked diseases to depletion of the organelles' pool of coenzyme Q10 brought about by mutation in the MFN2 gene, which... Read more

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.