Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Rapidly Aging Mice Given Boost of Young Stem Cells Live Longer, Healthier

By BiotechDaily International staff writers
Posted on 23 Jan 2012
Laboratory mice bred to age rapidly appear to have grown younger after investigators injected them with stem cell-like progenitor cells derived from the muscle of young, healthy animals. Instead of becoming ill and dying early as the control mice did, animals that received the stem/progenitor cells improved their health and lived two to three times longer than expected.

These findings were published in the January 3, 2012, issue of the journal Nature Communications. Earlier studies have shown stem cell dysfunction, such as poor replication and differentiation, in a variety of tissues in old age, but it is not been determined whether that loss of function contributed to the aging process or was a result of it, explained senior investigators Johnny Huard, PhD, and Laura Niedernhofer, MD, PhD.

Dr. Huard is professor in the departments of orthopedic surgery and of microbiology and molecular genetics, University of Pittsburgh School of Medicine (Pitt; PA, USA), and director of the Stem Cell Research Center at Pitt and Children’s Hospital of Pittsburgh of UPMC. Dr. Niedernhofer is associate professor in Pitt’s department of microbiology and molecular genetics and the University of Pittsburgh Cancer Institute (UPCI).

“Our experiments showed that mice that have progeria, a disorder of premature aging, were healthier and lived longer after an injection of stem cells from young, healthy animals,” Dr. Niedernhofer said. “That tells us that stem cell dysfunction is a cause of the changes we see with aging.”

The scientists studied a stem/progenitor cell population originated from the muscle of progeria mice and discovered that compared to those from normal rodents, the cells were fewer in number, did not replicate as frequently, did not differentiate as freely into specialized cells and were impaired in their ability to regenerate damaged muscle. The same defects were discovered in the stem/progenitor cells isolated from very old mice.

“We wanted to see if we could rescue these rapidly aging animals, so we injected stem/progenitor cells from young, healthy mice into the abdomens of 17-day-old progeria mice,” Dr. Huard said. “Typically the progeria mice die at around 21 to 28 days of age, but the treated animals lived far longer--some even lived beyond 66 days. They also were in better general health.”

As the progeria mice age, they lose muscle mass in their hind limbs, hunch over, tremble, and move slowly and awkwardly. Affected mice that got a shot of stem cells just before showing the first signs of aging were more like healthy mice, and they grew almost as large. More comprehensive examination showed new blood vessel growth in the brain and muscle, even though the stem/progenitor cells were not detected in those tissues.

In fact, the cells did not migrate to any specific tissue after injection into the abdomen. “This leads us to think that healthy cells secrete factors to create an environment that help correct the dysfunction present in the native stem cell population and aged tissue,” Dr. Niedernhofer said. “In a culture dish experiment, we put young stem cells close to, but not touching, progeria stem cells, and the unhealthy cells functionally improved.”

Animals that age normally were not treated with stem/progenitor cells, but the provocative findings urge further research, she added. They speculate that it might be possible one day to suppress the biologic deteriorations associated with aging by delivering a shot of youthful vigor, especially if specific rejuvenating proteins or molecules generated by the stem cells could be identified and isolated.

Related Links:
University of Pittsburgh School of Medicine


Channels

Genomics/Proteomics

view channel
Image: In mice, mitochondria (green) in healthy (left) and Mfn1-deficient heart muscle cells (center) are organized in a linear arrangement, but the organelles are enlarged and disorganized in Mfn2-deficient cells (right) (Photo courtesy of the Rockefeller Press).

Cell Biologists Find That Certain Mitochondrial Diseases Stem from Coenzyme Q10 Depletion

A team of German cell biologists has linked the development of certain mitochondrial-linked diseases to depletion of the organelles' pool of coenzyme Q10 brought about by mutation in the MFN2 gene, which... Read more

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.