Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PURITAN MEDICAL
GLOBETECH PUBLISHING LLC

Lithocholic Acid Kills Cancer, Spares Healthy Cells

By BiotechDaily International staff writers
Posted on 19 Jan 2012
Lithocholic acid (LCA), naturally generated in the liver during digestion, has been seriously underestimated because new research has revealed that LCA can kill several kinds of cancer cells, such as those found in breast cancer and various brain tumors.

The researchers, led by Concordia University (Austin, TX, USA), included scientists from McGill University (Montreal, Canada) and the Jewish General Hospital’s Lady Davis Institute (Montreal, Canada), as well as the University of Saskatchewan (Saskatoon, Canada). The study’s findings were published October 2011 in the journal Oncotarget.

Earlier research from the same investigators demonstrated LCA also extends the lifespan of aging yeast. This time, the team found LCA to be very selective in killing cancer cells while leaving normal cells unscathed. This could translate into a great improvement over the indiscriminant all-cell damaging drugs used in chemotherapy.

“LCA doesn’t just kill individual cancer cells. It could also prevent the entire tumor from growing,” stated senior author Vladimir Titorenko, a professor in the department of biology and Concordia University research chair in genomics, cell biology, and aging.

Moreover, LCA prevents tumors from releasing substances that cause neighboring cancer cells to grow and proliferate. Prof. Titorenko noted that LCA is the only compound that targets cancer cells, which could translate into tumor-halting power. “This is important for preventing cancer cells from spreading to other parts of the body,” he said, noting that unlike other antiaging compounds, LCA blocks cancer cell growth yet lets normal cells continue to grow.

The next phase for the research team will be to test LCA’s effect on different cancers in mice models. Prof. Titorenko expects that LCA will also kill cancer cells in the research and lead to human clinical trials. “Our study found that LCA kills not only tumors [neuroblastomas], but also human breast cancer cells,” said Prof. Titorenko. “This shows that it has a wide effect on different types of cancers.”

Prof. Titorenko emphasized that dissimilar to agent utilized in chemotherapy, LCA is a natural compound that is already present in humans. Studies have shown that LCA can be safely given to mice by adding it to their food. Therefore, scientists are looking into why LCA is so lethal for cancer cells. Prof. Titorenko conjectures that cancer cells have more sensors for LCA, which makes them more sensitive to the compound than normal cells.

LCA sensors transmit signals to mitochondria. It seems that when these signals are too strong, mitochondria self-destruct and take the cell along with them. Simply stated, Prof. Titorenko and his colleagues engaged in cancer cell disruption by targeting a weakness to LCA.

Related Links:
Concordia University
McGill University
Jewish General Hospital’s Lady Davis Institute



Channels

Genomics/Proteomics

view channel
Image: Researchers have generated disease-free stem cells from patients with mitochondrial disease that can be converted into any cell type including neuronal progenitors (left) or heart cells (right). These could potentially be used for future transplantation into patients (Photo courtesy of Salk Institute of Biological Studies).

Methods Developed to Generate Normal Stem Cells from Patients with Mitochondrial Defects

A recent paper described two methods for converting cells from patients with mitochondrial defects into normal pluripotent stem cells that could be induced to differentiate into several different types of tissues.... Read more

Drug Discovery

view channel
Image: A new micelle delivery system for the protective polyphenols resveratrol and quercetin (mRQ) may have value in cancer chemotherapy (Photo courtesy of Oregon State University).

Micelles Containing Resveratrol and Quercetin Reverse Doxorubicin Cardiotoxicity

Cancer researchers blocked the toxic effects of the cancer drug doxorubicin (DOX) by administering it together with the plant antioxidants resveratrol and quercetin. Although in use for more than 40... Read more

Lab Technologies

view channel
Image: The Leica DM2500 LED Microscope for clinical laboratories and research applications (Photo courtesy of Leica Microsystems).

New LED Microscope Completes Line of Clinical and Research Tools

A popular microscope used for both clinical and research applications is now available with LED illumination. The Leica (Wetzlar, Germany) DM2500 and DM2500 LED microscopes represent a class of tools... Read more

Business

view channel

Teva Buys Allergan Generic Business Unit

Teva Pharmaceutical Industries (Petah Tikva, Israel) has bought the Allergan (Irvine, CA, USA) generic drugs business for USD 40.5 billion in cash and stock, solidifying its position as the world's largest generic drug maker. Under the terms of the agreement, Teva will pay USD 33.75 billion in cash and USD 6.... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.