Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Lithocholic Acid Kills Cancer, Spares Healthy Cells

By BiotechDaily International staff writers
Posted on 19 Jan 2012
Lithocholic acid (LCA), naturally generated in the liver during digestion, has been seriously underestimated because new research has revealed that LCA can kill several kinds of cancer cells, such as those found in breast cancer and various brain tumors.

The researchers, led by Concordia University (Austin, TX, USA), included scientists from McGill University (Montreal, Canada) and the Jewish General Hospital’s Lady Davis Institute (Montreal, Canada), as well as the University of Saskatchewan (Saskatoon, Canada). The study’s findings were published October 2011 in the journal Oncotarget.

Earlier research from the same investigators demonstrated LCA also extends the lifespan of aging yeast. This time, the team found LCA to be very selective in killing cancer cells while leaving normal cells unscathed. This could translate into a great improvement over the indiscriminant all-cell damaging drugs used in chemotherapy.

“LCA doesn’t just kill individual cancer cells. It could also prevent the entire tumor from growing,” stated senior author Vladimir Titorenko, a professor in the department of biology and Concordia University research chair in genomics, cell biology, and aging.

Moreover, LCA prevents tumors from releasing substances that cause neighboring cancer cells to grow and proliferate. Prof. Titorenko noted that LCA is the only compound that targets cancer cells, which could translate into tumor-halting power. “This is important for preventing cancer cells from spreading to other parts of the body,” he said, noting that unlike other antiaging compounds, LCA blocks cancer cell growth yet lets normal cells continue to grow.

The next phase for the research team will be to test LCA’s effect on different cancers in mice models. Prof. Titorenko expects that LCA will also kill cancer cells in the research and lead to human clinical trials. “Our study found that LCA kills not only tumors [neuroblastomas], but also human breast cancer cells,” said Prof. Titorenko. “This shows that it has a wide effect on different types of cancers.”

Prof. Titorenko emphasized that dissimilar to agent utilized in chemotherapy, LCA is a natural compound that is already present in humans. Studies have shown that LCA can be safely given to mice by adding it to their food. Therefore, scientists are looking into why LCA is so lethal for cancer cells. Prof. Titorenko conjectures that cancer cells have more sensors for LCA, which makes them more sensitive to the compound than normal cells.

LCA sensors transmit signals to mitochondria. It seems that when these signals are too strong, mitochondria self-destruct and take the cell along with them. Simply stated, Prof. Titorenko and his colleagues engaged in cancer cell disruption by targeting a weakness to LCA.

Related Links:
Concordia University
McGill University
Jewish General Hospital’s Lady Davis Institute



BIOSIGMA S.R.L.
SLAS - Society for Laboratory Automation and Screening
RANDOX LABORATORIES
comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A 3-dimensional picture reveals how the antibodies in the experimental drug Zmapp bind to Ebola virus (Photo courtesy of the Scripps Research Institute).

Electron Microscope Imaging Shows How Experimental Anti-Ebola Drug Works

Electron microscope imaging has revealed how the experimental drug ZMapp binds to the Ebolavirus and provides insights into how the drug prevents growth of the pathogen. ZMapp, which was developed by... Read more

Drug Discovery

view channel

Omega 3 Found to Improve Behavior in Children with ADHD

Supplements of the fatty acids omega 3 and 6 can help children and adolescents who have a specific kind of have attention deficit hyperactivity disorder (ADHD). Moreover, these findings indicate that a customized cognitive training program can improve problem behavior in children with ADHD. Statistics show that 3%–6%... Read more

Lab Technologies

view channel

e-Incubator Technology Provides Real-Time Imaging of Bioengineered Tissues in a Controlled Unit

A new e-incubator, an innovative miniature incubator that is compatible with magnetic resonance imaging (MRI), enables scientists to grow tissue-engineered constructs under a controlled setting and to study their growth and development in real time without risk of contamination or damage. Offering the potential to test... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.