Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Adult Stem Cells Use Specific Pathways to Repair Damaged Muscle

By BiotechDaily International staff writers
Posted on 13 Dec 2011
When a muscle is injured, dormant adult stem cells called satellite cells are signaled to activate and help in repairing the muscle.

Investigators recently found how even distant satellite cells could help with the repair, and are now determining how the stem cells travel within the tissue. This information could ultimately help clinicians more effectively treat muscle disorders such as muscular dystrophy, in which the muscle is easily damaged and the patient’s satellite cells have cannot repair itself.

“When your muscles are injured, they send out a ‘mayday’ for satellite cells to come and fix them, and those cells know where to go to make more muscle cells, and eventually new muscle tissue,” said Dr. Cornelison, an associate professor of biological sciences in the College of Arts and Science and a researcher in the Bond Life Sciences Center at the University of Missouri (Columbia, MO, USA). “There is currently no effective satellite cell-based therapy for muscular dystrophy in humans. One problem with current treatments is that it requires 100 stem cell injections per square centimeter, and up to 4,000 injections in a single muscle for the patient, because the stem cells don't seem to be able to spread out very far. If we can learn how normal, healthy satellite cells are able to travel around in the muscles, clinical researchers might use that information to change how injected cells act and improve the efficiency of the treatment.”

In the new study, researchers in Dr. Cornelison’s lab used time-lapse microscopy to track the satellite cells movement over thin “stripes” of different proteins painted onto the glass slide. The researchers discovered that several versions of a protein called ephrin had the same effect on satellite cells: the cells that touch stripes made of ephrin immediately turn around and travel in a new direction. “The stem cell movement is similar to the way a person would act if asked to walk blindfolded down a hallway. They would feel for the walls,” Dr. Cornelison said. “Because the long, parallel muscle fibers carry these ephrin proteins on their surface, ephrin might be helping satellite cells move in a straighter line towards a distant ‘mayday’ signal.”

If researchers gave the satellite cells the signals to differentiate and form muscle fibers in culture, the group also found that they could utilize stripes of ephrins to get them to arrange themselves in parallel, the way muscle fibers continuously do in living beings, but have never been convinced to do in a culture dish. This leads scientists to believe that ephrins might actually be regulating several of the different steps that are needed to get from a population of stem cells spread out all over the muscle, to an organized and patterned new muscle fiber.

“We are really excited about the potential of these findings to explain a lot of things that were puzzling about the way satellite cells behave in healthy muscle, compared to a muscular dystrophy patient’s own cells, or cells that have been injected therapeutically,” Dr. Cornelison said. “If we're really lucky, we could find something that could make a difference in these kids’ lives, and that's what we want the most.”

The study’s findings were published in the December 2011 issue of the journal Development.

Related Links:
University of Missouri



Channels

Genomics/Proteomics

view channel
Image: In mice, mitochondria (green) in healthy (left) and Mfn1-deficient heart muscle cells (center) are organized in a linear arrangement, but the organelles are enlarged and disorganized in Mfn2-deficient cells (right) (Photo courtesy of the Rockefeller Press).

Cell Biologists Find That Certain Mitochondrial Diseases Stem from Coenzyme Q10 Depletion

A team of German cell biologists has linked the development of certain mitochondrial-linked diseases to depletion of the organelles' pool of coenzyme Q10 brought about by mutation in the MFN2 gene, which... Read more

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.