Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Strategy Found to Delay Age-Related Disorders

By BiotechDaily International staff writers
Posted on 22 Nov 2011
Print article
Scientists have demonstrated that eliminating cells that accrue with age could prevent or delay the onset of age-related disorders and disabilities. The research, conducted in mouse models, provides the first evidence that these cells could contribute to aging and suggests a way to help people stay healthier as they age.

The findings were published November 2, 2011, in the journal Nature, along with an independent commentary on the discovery. “By attacking these cells and what they produce, one day we may be able to break the link between aging mechanisms and predisposition to diseases like heart disease, stroke, cancers, and dementia,” remarked coauthor James Kirkland, MD, PhD, head of the Mayo Clinic’s (Rochester, MN, USA) Robert and Arlene Kogod Center on Aging, and a professor of aging research. “There is potential for a fundamental change in the way we provide treatment for chronic diseases in older people.”

Fifty years ago, scientists discovered that cells undergo a finite number of divisions before they stop dividing. At that point, the cells reach a state called cellular senescence where they neither die nor continue to multiply. They produce factors that injure adjacent cells and cause tissue inflammation. This alternate cell fate is believed to be a mechanism to prevent runaway cell growth and the spread of cancer. The immune system sweeps out these dysfunctional cells on a regular basis, but over time becomes less effective at “keeping house.”

As a result, senescent cells accumulate with age. Whether and how these cells cause age-related diseases and dysfunction has been a major open question in the field of aging. One reason the question has been so difficult to answer is that the numbers of senescent cells are quite limited and comprise at most only 10% to 15% of cells in an elderly individual.

“Our discovery demonstrates that in our body cells are accumulating that cause these age-related disorders and discomforts,” noted senior author Jan van Deursen, PhD, a Mayo Clinic molecular biologist and professor of cellular senescence. “Therapeutic interventions to get rid of senescent cells or block their effects may represent an avenue to make us feel more vital, healthier, and allow us to stay independent for a much longer time.”

“Through their novel methodology, the researchers discovered that deletion of senescent cells in genetically engineered mice led to improvement in at least some aspects of the physiology of these animals. So, with the caveat that the study involved a mouse model displaying accelerated aging, this paper provides important insights on aging at the cellular level,” said Felipe Sierra, PhD, director of the division of aging biology, US National Institute on Aging, National Institutes of Health (Bethesda, MD, USA).

Dr. van Deursen and colleagues genetically modified mice so their senescent cells harbored a molecule called caspase 8 that was only activated in the presence of a drug that has no effect on normal cells. When the transgenic mice were exposed to this drug, caspase 8 was triggered in the senescent cells, drilling holes in the cell membrane to destroy the senescent cells specifically.

The researchers discovered that lifelong elimination of senescent cells delayed the onset of age-related disorders such as cataracts, muscle loss, and weakness. Possibly, even more significantly, they showed that taking out these cells later in life could slow the progression of already established age-related disorders.

The findings, according to the researchers, validate a role of senescent cells in the aging process and demonstrate that chemicals secreted by these cells contribute to age-related tissue dysfunction and disease.

Related Links:

Mayo Clinic



Print article

Channels

Genomics/Proteomics

view channel
Image: Follicular helper T-cells (TFH cells, shown in blue) play a crucial role in the maturation of antibody-producing B-cells (shown in green). Activated B-cells give rise germinal centers (shown in red), where mature B-cells proliferate and produce highly specific antibodies against pathogens. Top left: normal germinal center in a mouse tonsil. All others: Germinal centers fail to form when the interaction between ICOS and TBK1 is interrupted (Photo courtesy of Dr. Kok-Fai Kong, La Jolla Institute for Allergy and Immunology).

Molecular Pathway Controlling High-affinity Antibody Production Identified

A molecular pathway has been identified that controls formation of follicular helper T-cells (TFH cells) germinal centers and production of high-affinity antibodies through interaction with the inducible... Read more

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.