Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

Turning Back the Clock on Adult Stem Cell Aging

By BiotechDaily International staff writers
Posted on 03 Oct 2011
Researchers have demonstrated they can reverse the aging process for human adult stem cells, which are responsible for helping old or damaged tissues regenerate. The study’s results could lead to medical treatments that may repair a variety of disorders that occur because of tissue damage as people age.

A research group led by the Buck Institute for Research on Aging (Novato, CA, USA) and the Georgia Institute of Technology (Atlanta, GA, USA conducted the study in cell culture, which was published in the September 1, 2011, edition of the journal Cell Cycle.

The regenerative capability of tissues and organs declines as people age. The modern day stem cell theory of aging suggests that living organisms are as old as are its tissue specific or adult stem cells. Therefore, an understanding of the molecules and processes that enable human adult stem cells to trigger self-renewal and to divide, proliferate, and then differentiate in order to rejuvenate damaged tissue might be the answer to regenerative medicine and an ultimate cure for many age-related diseases. A research group led by the Buck Institute for Research on Aging in collaboration with the Georgia Institute of Technology conducted the study that identifies what is going wrong with the biologic clock underlying the limited division of human adult stem cells as they age.

“We demonstrated that we were able to reverse the process of aging for human adult stem cells by intervening with the activity of non-protein coding RNAs originated from genomic regions once dismissed as nonfunctional ‘genomic junk,’” said Victoria Lunyak, associate professor at the Buck Institute for Research on Aging.

Related Links:
Buck Institute for Research on Aging
Georgia Institute of Technology



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Drug Discovery

view channel
Image: The new peptide offers a triple hormone effect in a single-cell molecule (Photo courtesy of Indiana University).

Tripeptide Drug Effectively Controls Metabolic Syndrome in Rodent Model

Promising results in reducing obesity and normalizing glucose metabolism obtained with a synthetic dipeptide drug have been enhanced by the addition of a molecule of a third hormone, glucagon.... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.