Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PURITAN MEDICAL

Turning Back the Clock on Adult Stem Cell Aging

By BiotechDaily International staff writers
Posted on 03 Oct 2011
Researchers have demonstrated they can reverse the aging process for human adult stem cells, which are responsible for helping old or damaged tissues regenerate. The study’s results could lead to medical treatments that may repair a variety of disorders that occur because of tissue damage as people age.

A research group led by the Buck Institute for Research on Aging (Novato, CA, USA) and the Georgia Institute of Technology (Atlanta, GA, USA conducted the study in cell culture, which was published in the September 1, 2011, edition of the journal Cell Cycle.

The regenerative capability of tissues and organs declines as people age. The modern day stem cell theory of aging suggests that living organisms are as old as are its tissue specific or adult stem cells. Therefore, an understanding of the molecules and processes that enable human adult stem cells to trigger self-renewal and to divide, proliferate, and then differentiate in order to rejuvenate damaged tissue might be the answer to regenerative medicine and an ultimate cure for many age-related diseases. A research group led by the Buck Institute for Research on Aging in collaboration with the Georgia Institute of Technology conducted the study that identifies what is going wrong with the biologic clock underlying the limited division of human adult stem cells as they age.

“We demonstrated that we were able to reverse the process of aging for human adult stem cells by intervening with the activity of non-protein coding RNAs originated from genomic regions once dismissed as nonfunctional ‘genomic junk,’” said Victoria Lunyak, associate professor at the Buck Institute for Research on Aging.

Related Links:
Buck Institute for Research on Aging
Georgia Institute of Technology



Channels

Genomics/Proteomics

view channel
Image: Photomicrograph showing acute myeloid leukemia (AML) cells (Photo courtesy of the University of California, San Diego).

Cell Surface Protein Deletion Blocks AML Growth in Mouse Model

Cancer researchers have found that the cell surface protein tetraspanin3 (Tspan3) is required for the development and propagation of the fast-growing and extremely difficult-to-treat blood cancer, acute... Read more

Drug Discovery

view channel
Image: A new micelle delivery system for the protective polyphenols resveratrol and quercetin (mRQ) may have value in cancer chemotherapy (Photo courtesy of Oregon State University).

Micelles Containing Resveratrol and Quercetin Reverse Doxorubicin Cardiotoxicity

Cancer researchers blocked the toxic effects of the cancer drug doxorubicin (DOX) by administering it together with the plant antioxidants resveratrol and quercetin. Although in use for more than 40... Read more

Lab Technologies

view channel
Image: The Leica DM2500 LED Microscope for clinical laboratories and research applications (Photo courtesy of Leica Microsystems).

New LED Microscope Completes Line of Clinical and Research Tools

A popular microscope used for both clinical and research applications is now available with LED illumination. The Leica (Wetzlar, Germany) DM2500 and DM2500 LED microscopes represent a class of tools... Read more

Business

view channel

Teva Buys Allergan Generic Business Unit

Teva Pharmaceutical Industries (Petah Tikva, Israel) has bought the Allergan (Irvine, CA, USA) generic drugs business for USD 40.5 billion in cash and stock, solidifying its position as the world's largest generic drug maker. Under the terms of the agreement, Teva will pay USD 33.75 billion in cash and USD 6.... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.