Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
BioConferenceLive

Turning Back the Clock on Adult Stem Cell Aging

By BiotechDaily International staff writers
Posted on 03 Oct 2011
Researchers have demonstrated they can reverse the aging process for human adult stem cells, which are responsible for helping old or damaged tissues regenerate. The study’s results could lead to medical treatments that may repair a variety of disorders that occur because of tissue damage as people age.

A research group led by the Buck Institute for Research on Aging (Novato, CA, USA) and the Georgia Institute of Technology (Atlanta, GA, USA conducted the study in cell culture, which was published in the September 1, 2011, edition of the journal Cell Cycle.

The regenerative capability of tissues and organs declines as people age. The modern day stem cell theory of aging suggests that living organisms are as old as are its tissue specific or adult stem cells. Therefore, an understanding of the molecules and processes that enable human adult stem cells to trigger self-renewal and to divide, proliferate, and then differentiate in order to rejuvenate damaged tissue might be the answer to regenerative medicine and an ultimate cure for many age-related diseases. A research group led by the Buck Institute for Research on Aging in collaboration with the Georgia Institute of Technology conducted the study that identifies what is going wrong with the biologic clock underlying the limited division of human adult stem cells as they age.

“We demonstrated that we were able to reverse the process of aging for human adult stem cells by intervening with the activity of non-protein coding RNAs originated from genomic regions once dismissed as nonfunctional ‘genomic junk,’” said Victoria Lunyak, associate professor at the Buck Institute for Research on Aging.

Related Links:
Buck Institute for Research on Aging
Georgia Institute of Technology



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Microcomputed tomography images (top) and histology images (bottom) of the knees of mice fed a very high fat diet containing omega-3 fatty acid supplement (left) or only omega-6 fatty acids (right) after a knee injury. The omega-6 diet showed abnormal bone remodeling and calcified tissue formation in the joint (white arrow). The omega-6 diet also showed significant loss of cartilage (red staining, yellow arrowhead) and increased joint inflammation (Photo courtesy of Duke University).

Dietary Omega-3 Fatty Acids Moderate Severity of Osteoarthritis in a Mouse Model

Researchers working with an osteoarthritis (OA) obese mouse model found that the fat content of the animals' diet contributed more to the development or arrest of OA than did body weight.... Read more

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel

Vaccine Being Developed for Heart Disease Close to Reality

The world’s first vaccine for heart disease is becoming a possibility with researchers demonstrating significant arterial plaque reduction in concept testing in mice. Klaus Ley, MD, from the La Jolla Institute for Allergy and Immunology (LA Jolla, CA, USA), and a vascular immunology specialist, is leading the vaccine... Read more

Business

view channel

A Surge in IPOs Revitalize Investments for the Global Pharma and Biotech

Anti-infective drugs, oncology, and pharmaceutical contract laboratories attract the most investment up to now. The intensified private equity and venture capital (PEVC) deal activity in the global healthcare industry during the recession years, 2008–2010, witnessed a waning post-2010. However, the decline in deals... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.