Features | Partner Sites | Information | LinkXpress
Sign In
BioConferenceLive
JIB
GLOBETECH PUBLISHING

Imaging Technique Can Quantitatively Measure Cell Mass with Light

By BiotechDaily International staff writers
Posted on 08 Sep 2011
Researchers are providing new clues into the weighty question of cell growth.

Led by electrical and computer engineering professor Dr. Gabriel Popescu, from the University of Illinois (Urbana-Champaign, USA), the investigators developed a new imaging technique called spatial light interference microscopy (SLIM) that can measure cell mass using two beams of light. Published ahead of print July 25, 2011, in the Proceedings of the [US] National Academy of Science, the SLIM technique offers new clues into the much-debated question of whether cells grow at a constant rate or exponentially.

SLIM is extremely sensitive, quantitatively measuring mass with femtogram accuracy. By comparison, a micrometer-sized droplet of water weighs 1,000 femtograms. It can measure the growth of a single cell, and even mass transport within the cell. Yet, the technique is broadly applicable. “A significant advantage over existing methods is that we can measure all types of cells--bacteria, mammalian cells, adherent cells, nonadherent cells, single cells, and populations,” said Mustafa Mir, a graduate student and a first author of the article. “And all this while maintaining the sensitivity and the quantitative information that we get.”

Unlike most other cell-imaging techniques, SLIM--a combination of phase-contrast microscopy and holography--does not need staining or any other special preparation. Because it is completely noninvasive, the researchers can study cells as they go about their natural functions. It uses white light and it can be combined with more traditional microscopy techniques, such as fluorescence, to monitor cells as they grow. “We were able to combine more traditional methods with our method because this is just an add-on module to a commercial microscope,” Mr. Mir said. “Biologists can use all their old tricks and just add our module on top.”

Because of SLIM’s sensitivity, the scientists could monitor cells’ growth through different phases of the cell cycle. They discovered that mammalian cells show clear exponential growth only during the G2 phase of the cell cycle, after the DNA replicates and before the cell divides. This information has great implications not only for essential biology, but also for diagnostics, drug development, and tissue engineering.

The researchers hope to apply their new knowledge of cell growth to different disease models. For example, they plan to use SLIM to see how growth varies between normal cells and cancer cells, and the effects of treatments on the growth rate.

Dr. Popescu, a member of the Beckman Institute for Advanced Science and Technology at the University of Illinois, is establishing SLIM as a shared resource on the Illinois campus, hoping to exploit its flexibility for basic and clinical research in a number of areas. “It could be used in many applications in both life sciences and materials science,” stated Dr. Popescu, who also is a professor of physics and of bioengineering. “The interferometric information can translate to the topography of silicon wafers or semiconductors. It’s like an iPad--we have the hardware, and there are a number of different applications dedicated to specific problems of interest to different labs.”

Related Links:

University of Illinois





comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Blocking the activity of HSP101 may imprison the malaria parasite inside its protective vacuole within the red blood cell. In the electron micrograph, the malaria parasites appear in blue and uninfected red blood cells are shown in red (Photo courtesy of the [US] National Institute of Allergy and Infectious Diseases).

Heat Shock Protein Plays Critical Role in Malaria Parasite Protein Trafficking

A pair of recent papers described the molecular operators that enable the malaria parasite Plasmodium falciparum to export a large variety of proteins across the parasitophorous vacuolar membrane (PVM)... Read more

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Business

view channel

Cancer Immunotherapy Sector Predicted to Surge to USD 9 Billion Across Major Pharma Through 2022

The immunotherapy market will experience substantial growth through 2022, increasing from USD 1.1 billion in 2012 to nearly USD 9 billion in 2022 (corresponding to 23.8% annual growth) in the United Kingdom, United States, France, Germany, Italy, Spain, and Japan, according to recent market research. This notable growth... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.