Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Imaging Technique Can Quantitatively Measure Cell Mass with Light

By BiotechDaily International staff writers
Posted on 08 Sep 2011
Researchers are providing new clues into the weighty question of cell growth.

Led by electrical and computer engineering professor Dr. Gabriel Popescu, from the University of Illinois (Urbana-Champaign, USA), the investigators developed a new imaging technique called spatial light interference microscopy (SLIM) that can measure cell mass using two beams of light. Published ahead of print July 25, 2011, in the Proceedings of the [US] National Academy of Science, the SLIM technique offers new clues into the much-debated question of whether cells grow at a constant rate or exponentially.

SLIM is extremely sensitive, quantitatively measuring mass with femtogram accuracy. By comparison, a micrometer-sized droplet of water weighs 1,000 femtograms. It can measure the growth of a single cell, and even mass transport within the cell. Yet, the technique is broadly applicable. “A significant advantage over existing methods is that we can measure all types of cells--bacteria, mammalian cells, adherent cells, nonadherent cells, single cells, and populations,” said Mustafa Mir, a graduate student and a first author of the article. “And all this while maintaining the sensitivity and the quantitative information that we get.”

Unlike most other cell-imaging techniques, SLIM--a combination of phase-contrast microscopy and holography--does not need staining or any other special preparation. Because it is completely noninvasive, the researchers can study cells as they go about their natural functions. It uses white light and it can be combined with more traditional microscopy techniques, such as fluorescence, to monitor cells as they grow. “We were able to combine more traditional methods with our method because this is just an add-on module to a commercial microscope,” Mr. Mir said. “Biologists can use all their old tricks and just add our module on top.”

Because of SLIM’s sensitivity, the scientists could monitor cells’ growth through different phases of the cell cycle. They discovered that mammalian cells show clear exponential growth only during the G2 phase of the cell cycle, after the DNA replicates and before the cell divides. This information has great implications not only for essential biology, but also for diagnostics, drug development, and tissue engineering.

The researchers hope to apply their new knowledge of cell growth to different disease models. For example, they plan to use SLIM to see how growth varies between normal cells and cancer cells, and the effects of treatments on the growth rate.

Dr. Popescu, a member of the Beckman Institute for Advanced Science and Technology at the University of Illinois, is establishing SLIM as a shared resource on the Illinois campus, hoping to exploit its flexibility for basic and clinical research in a number of areas. “It could be used in many applications in both life sciences and materials science,” stated Dr. Popescu, who also is a professor of physics and of bioengineering. “The interferometric information can translate to the topography of silicon wafers or semiconductors. It’s like an iPad--we have the hardware, and there are a number of different applications dedicated to specific problems of interest to different labs.”

Related Links:

University of Illinois





comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Drug Discovery

view channel
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).

Experimental Antimalaria Drug Induces the Immune System to Destroy Infected Red Blood Cells

An experimental drug for the treatment of malaria was found to induce morphological changes in infected erythrocytes that enabled the immune system to recognize and eliminate them. Investigators at... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.