We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Breast Inflammation Shown to Be Key to Cancer Growth

By LabMedica International staff writers
Posted on 10 Jan 2011
Print article
It took 12 years and a creation of a highly sophisticated transgenic mouse, but researchers have finally confirmed a long believed hypothesis that inflammation in the breast is key to the development and progression of breast cancer.

In the December 15, 2010, issue of the journal Cancer Research, the scientists, from at Kimmel Cancer Center at Jefferson University (Philadelphia, PA, USA), reported they can now conclusively demonstrate that an inflammatory process within the breast itself promotes growth of breast cancer stem cells responsible for tumor development. They also show that inactivating this inflammation selectively within the breast reduced activity of these stem cells, and blocked breast cancer from forming.

"These studies show for the first time that inactivating the NFKB inflammatory pathway in the breast epithelium blocks the onset and progression of breast cancer in living animals," said Richard G. Pestell, MD, PhD, director, Kimmel Cancer Center, and chairman of cancer biology.

"This finding has clinical implications," remarked coauthor Michael Lisanti, leader of the Program in Molecular Biology and Genetics of Cancer at Jefferson. "Suppressing the whole body's inflammatory process has side effects. These studies provide the rationale for more selective anti-inflammatory therapy directed just to the breast."

Dr. Pestell and his colleagues showed the "canonical" NFKB pathway promotes breast cancer development: the first "insult" is provided by the HER2 oncogene, which then activates NFKB (nuclear factor kappa-light-chain-enhancer of activated B cells). NFKB triggers inflammation via tumor-associated macrophages (TAM), which produce tumor growth-promoting factors.

Although inflammation, mediated by NFKB, has long been thought to be important in breast cancer development, the hypothesis had been untestable because NF-κB is vital to embryonic development, according to Dr. Pestell. "When you try to knock out NFKB genes in mice, they die." He addressed this problem by creating a mouse in which the inflammatory system within the adult animal's normal breast could be regulated. This allows selective inactivation of NFKB in different cell types, and took 12 years to accomplish, Dr. Pestell reported. "These mice have five cointegrated transgenes."

The mice are programmed to develop breast cancer; however, the researchers discovered that if they selectively blocked inflammation just in the breast, tumors would not develop. "This is a very novel finding," Dr. Pestell stated.

The investigators then demonstrated that this inactivation also reduced the number of cancer stem cells in the breast. "That told us that inflammation, through the action of NF-κB, is important to the growth and activity of cancer stem cells," Dr. Pestell said. "The transgenic mice are a new technology that can be used by the scientists and the pharmaceutical industry to understand the role of NFKB in different diseases including heart disease, neurodegeneration, and other cancers."

Related Links:
Kimmel Cancer Center at Jefferson University



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.