Features Partner Sites Information LinkXpress
Sign In
Demo Company

Fine-Tuning Liver Glucose Metabolism

By Biotechdaily staff writers
Posted on 30 Jun 2006
Print article
Researchers have traced the biochemical mechanism responsible for modulating the uptake, release, and synthesis of glucose by the liver.

Previous findings had shown that hormonal and nutrient regulation of glucose synthesis in the liver was controlled by modulation of the transcriptional coactivator protein PGC-1-alpha. In the current study, investigators at Johns Hopkins University (Baltimore, MD, USA) learned that PGC-1-alpha resides in a multi-protein complex containing the acetyltransferase GCN5. Fine-tuning of glucose metabolism depends on inactivation of PGC-1-alpha by this enzyme and its subsequent sequestering away from the genes it was normally meant to activate.

This mechanism was demonstrated experimentally by using an adenovirus vector to implant the gene for GCN5 into the livers of a group of starved mice. Normally such animals are actively releasing glucose into the blood, but results published in the June 2006 issue of Cell Metabolism showed that glucose release in these genetically engineered animals was significantly reduced.

"These results show that changing GCN5 is sufficient to control the sugar balance in mice,” explained senior author Dr. Pere Puigserver, assistant professor of cell biology at Johns Hopkins University. "Therefore, GCN5 has the potential to be a target for therapeutic drug design in the future. Understanding the ways that energy production and use are controlled is crucial to developing new drugs and therapies.”

Related Links:
Johns Hopkins University

Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more

Lab Technologies

view channel
Image: The new ambr 15 fermentation micro-bioreactor system was designed to enhance microbial strain screening applications (Photo courtesy of Sartorius Stedim Biotech).

New Bioreactor System Streamlines Strain Screening and Culture

Biotechnology laboratories working with bacterial cultures will benefit from a new automated micro bioreactor system that was designed to enhance microbial strain screening processes. The Sartorius... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.