Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Fine-Tuning Liver Glucose Metabolism

By Biotechdaily staff writers
Posted on 30 Jun 2006
Researchers have traced the biochemical mechanism responsible for modulating the uptake, release, and synthesis of glucose by the liver.

Previous findings had shown that hormonal and nutrient regulation of glucose synthesis in the liver was controlled by modulation of the transcriptional coactivator protein PGC-1-alpha. In the current study, investigators at Johns Hopkins University (Baltimore, MD, USA) learned that PGC-1-alpha resides in a multi-protein complex containing the acetyltransferase GCN5. Fine-tuning of glucose metabolism depends on inactivation of PGC-1-alpha by this enzyme and its subsequent sequestering away from the genes it was normally meant to activate.

This mechanism was demonstrated experimentally by using an adenovirus vector to implant the gene for GCN5 into the livers of a group of starved mice. Normally such animals are actively releasing glucose into the blood, but results published in the June 2006 issue of Cell Metabolism showed that glucose release in these genetically engineered animals was significantly reduced.

"These results show that changing GCN5 is sufficient to control the sugar balance in mice,” explained senior author Dr. Pere Puigserver, assistant professor of cell biology at Johns Hopkins University. "Therefore, GCN5 has the potential to be a target for therapeutic drug design in the future. Understanding the ways that energy production and use are controlled is crucial to developing new drugs and therapies.”



Related Links:
Johns Hopkins University

Channels

Genomics/Proteomics

view channel
Image: The TheraCyte cell encapsulation device (Photo courtesy of TheraCyte, Inc.).

Encapsulated Human-Insulin-Producing Progenitor Cells Cure Diabetes in Mouse Model

A breakthrough system that allows subcutaneous implantation of encapsulated immature pancreatic cells (beta progenitor cells) was shown to produce enough insulin to correct the symptoms of diabetes in a mouse model.... Read more

Drug Discovery

view channel
Image: Chitosan is derived from the shells of shrimp and other sea crustaceans, including Alaskan pink shrimp, pictured here (Photo courtesy of NOAA - [US] National Oceanic and Atmospheric Administration).

Chitosan Treatment Clears the Way for Antibiotics to Eliminate Recurrent Urinary Tract Infections

Recurrent urinary tract infection was successfully resolved in a mouse model by treatment with the exfoliant chitosan followed by a round of antibiotics. Bacterial urinary tract infection (UTI), most... Read more

Therapeutics

view channel

Cytokine Identified That Causes Mucositis in Cancer Therapy Patients

The action of the cytokine interleukin 1-beta (IL-1beta) has been found to underlie the onset of mucositis, a common, severe side effect of chemotherapy and irradiation of cancer patients. Mucositis occurs as a result of cell death in reaction to chemo- or radiotherapy. The mucosal lining of the mouth becomes thin, may... Read more

Lab Technologies

view channel
Image: Diagram of the apparatus for testing drug solubility (Photo courtesy of the University of Huddersfield).

Novel Apparatus Mimics the Human Digestive System for Oral Drug Studies

A team of British drug developers has created an instrument that mimics the human digestive system, which will allow them to accurately determine how orally-administered medications are dissolved and then absorbed.... Read more

Business

view channel

Analytical Sciences Trade Fair Declared a Rousing Success

Organizers of this year's 24th "analytica" biosciences trade fair have reported significant increases in both the number of visitors and exhibitors compared to the 2012 event. The analytica trade fair for laboratory technology, analysis, and biotechnology has been held at the Munich (Germany) Trade Fair Center every... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.