Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
BioConferenceLive
JIB

Fine-Tuning Liver Glucose Metabolism

By Biotechdaily staff writers
Posted on 30 Jun 2006
Researchers have traced the biochemical mechanism responsible for modulating the uptake, release, and synthesis of glucose by the liver.

Previous findings had shown that hormonal and nutrient regulation of glucose synthesis in the liver was controlled by modulation of the transcriptional coactivator protein PGC-1-alpha. In the current study, investigators at Johns Hopkins University (Baltimore, MD, USA) learned that PGC-1-alpha resides in a multi-protein complex containing the acetyltransferase GCN5. Fine-tuning of glucose metabolism depends on inactivation of PGC-1-alpha by this enzyme and its subsequent sequestering away from the genes it was normally meant to activate.

This mechanism was demonstrated experimentally by using an adenovirus vector to implant the gene for GCN5 into the livers of a group of starved mice. Normally such animals are actively releasing glucose into the blood, but results published in the June 2006 issue of Cell Metabolism showed that glucose release in these genetically engineered animals was significantly reduced.

"These results show that changing GCN5 is sufficient to control the sugar balance in mice,” explained senior author Dr. Pere Puigserver, assistant professor of cell biology at Johns Hopkins University. "Therefore, GCN5 has the potential to be a target for therapeutic drug design in the future. Understanding the ways that energy production and use are controlled is crucial to developing new drugs and therapies.”



Related Links:
Johns Hopkins University

comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Microcomputed tomography images (top) and histology images (bottom) of the knees of mice fed a very high fat diet containing omega-3 fatty acid supplement (left) or only omega-6 fatty acids (right) after a knee injury. The omega-6 diet showed abnormal bone remodeling and calcified tissue formation in the joint (white arrow). The omega-6 diet also showed significant loss of cartilage (red staining, yellow arrowhead) and increased joint inflammation (Photo courtesy of Duke University).

Dietary Omega-3 Fatty Acids Moderate Severity of Osteoarthritis in a Mouse Model

Researchers working with an osteoarthritis (OA) obese mouse model found that the fat content of the animals' diet contributed more to the development or arrest of OA than did body weight.... Read more

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel

Vaccine Being Developed for Heart Disease Close to Reality

The world’s first vaccine for heart disease is becoming a possibility with researchers demonstrating significant arterial plaque reduction in concept testing in mice. Klaus Ley, MD, from the La Jolla Institute for Allergy and Immunology (LA Jolla, CA, USA), and a vascular immunology specialist, is leading the vaccine... Read more

Business

view channel

A Surge in IPOs Revitalize Investments for the Global Pharma and Biotech

Anti-infective drugs, oncology, and pharmaceutical contract laboratories attract the most investment up to now. The intensified private equity and venture capital (PEVC) deal activity in the global healthcare industry during the recession years, 2008–2010, witnessed a waning post-2010. However, the decline in deals... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.