We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Stereo Microscope Objective Designed for Specimens in Aqueous Solution

By LabMedica International staff writers
Posted on 23 Jul 2014
Print article
Image: Studying Vascular Development using Zebrafish (somites). Left: without correction. Right: optics adapted to the refractive index of the water column by using the correction ring of the Leica Planapo 2.0x CORR objective (Photo courtesy of Mailin J. Hamm, angiogenesis laboratory, University of Muenster, Germany).
Image: Studying Vascular Development using Zebrafish (somites). Left: without correction. Right: optics adapted to the refractive index of the water column by using the correction ring of the Leica Planapo 2.0x CORR objective (Photo courtesy of Mailin J. Hamm, angiogenesis laboratory, University of Muenster, Germany).
Image: Studying Vascular Development using Zebrafish (eye). Left: without correction. Right: optics adapted to the refractive index of the water column by using the correction ring of the Leica Planapo 2.0x CORR objective (Photo courtesy of Mailin J. Hamm, Angiogenesis Laboratory, University of Muenster, Germany).
Image: Studying Vascular Development using Zebrafish (eye). Left: without correction. Right: optics adapted to the refractive index of the water column by using the correction ring of the Leica Planapo 2.0x CORR objective (Photo courtesy of Mailin J. Hamm, Angiogenesis Laboratory, University of Muenster, Germany).
A new stereo-microscope has been developed specifically for use with specimens immersed in aqueous solution. With this objective, users can obtain pin sharp visualization of specimens with up to a 5-mm water column between the specimen and the objective.

The objective solves a problem many stereo-microscope users have: looking at specimens in aqueous solution deteriorates image quality due to the refractive index mismatch between water and the air surrounding the microscope objective.

As the refractive index can be compensated with the Leica Microsystems (Wetzlar, Germany) Planapo 2.0x CORR objective for the Leica M series, interesting structures cannot be misread because of aberrations. Image quality is further enhanced by the objective’s high numerical aperture of up to 0.35.

Many stereo microscope applications such as zebra fish research, in vitro fertilization, or transgenics require aqueous solution to optimize the preparation process or to keep the specimen alive. Especially at high magnifications this poses an aberration problem, which results in blurred images with lower information content. The Leica Planapo 2.0x CORR objective overcomes this problem with the help of an adjustable correction ring. Turning the ring to the specified position enables users to adapt the optic to the correct refractive index according to the water column above the specimen. If users need to observe specimens in an airy surrounding, they simply return the correction ring to the home position.

“With our new objective we provide a high-quality tool for imaging specimens in liquid solution,” noted Jennifer Horner, product manager for stereo microscopes at Leica Microsystems. “It enables users to observe and document specimens as if the water was not there. So misinterpretations due to optical aberrations with water-immersed specimens are now things of the past. In addition, a numerical aperture of up to 0.35 is an outstanding value for objectives in this category. This, too, considerably boosts image quality.”

A working distance of 20 mm allows for easy access to the specimen. A quick-start guide comes with the microscope and helps users to quickly understand how to use the objective.

Related Links:

Leica Microsystems


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.