We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Blocking Cell Movement Explored to Stop the Spread of Cancer

By LabMedica International staff writers
Posted on 14 Jul 2014
Print article
Image: Migrating embryonic neural crest cells (Photo courtesy of UCL - University College London).
Image: Migrating embryonic neural crest cells (Photo courtesy of UCL - University College London).
Learning more about how cells travel through the body could lead to innovative new treatments to block cancer cells from metastasizing and causing secondary tumors, according to new research.

Scientists discovered that cells can change into an invasive, liquid-like state to readily move through the thin channels in the human body. This transformation is activated by chemical signals, which could be blocked to stop cancer cells from spreading. Most cancer deaths are not caused by to primary tumors, but to secondary tumors in major organs, such as the lungs or brain, caused by cells moving from the original tumor to other places in the body.

The study led by the University College London (UCL; UK) researchers and published July 8, 2014, in the Journal of Cell Biology, used embryonic cells to better determine how groups of cells move in a developmental process similar to that exploited by cancer to spread around the body. The scientists reported that a molecule called lysophosphatidic acid (LPA) transforms cells from a solid-like to a liquid-like state, allowing cells to flow between normal tissues in the body. They were able to turn off the signals from LPA, stopping the cells from moving down the narrow, blood vessel-like channels.

Lead scientist Prof. Roberto Mayor, from the UCL department of cell and developmental biology, said, “We have found a way to stop the movement of embryonic cells by blocking LPA signals. It is likely that a similar mechanism operates during cancer invasion, which suggests a possible alternative which cancer treatments might work in the future, if therapies can be targeted to limit the tissue fluidity of tumors. Our findings are important for the fields of cell, developmental and cancer biology. Previously, we thought cells only moved around the body either individually or as groups of well-connected cells. What we have discovered is a hybrid state where cells loosen their links to neighboring cells but still move en masse together, like a liquid. Moreover, we can stop this movement.”

Related Links:

University College London


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.