We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Blocking Fructose Transport Prevents Fatty Liver Disease in Mouse Model

By LabMedica International staff writers
Posted on 17 Jun 2014
Print article
Image: The transporter GLUT8 (green) is in the outer membrane of liver cells. In mice, blocking GLUT8 stops fructose from entering the liver and protects against nonalcoholic fatty liver disease. The liver cell nuclei are shown in blue (Photo courtesy of Dr. Brian J. DeBosch, Washington University School of Medicine).
Image: The transporter GLUT8 (green) is in the outer membrane of liver cells. In mice, blocking GLUT8 stops fructose from entering the liver and protects against nonalcoholic fatty liver disease. The liver cell nuclei are shown in blue (Photo courtesy of Dr. Brian J. DeBosch, Washington University School of Medicine).
A recent paper showed that blocking the action of the facilitative glucose and fructose transporter enzyme GLUT8 (Slc2A8 or solute carrier family 2 (facilitated glucose transporter) member 8) could prevent nonalcoholic fatty liver disease (NAFLD) in cultured mouse liver tissues.

NAFLD is one of the world's most common liver diseases, and it is considered to be the hepatic manifestation of the metabolic syndrome, which is characterized by obesity, elevated blood sugar, and high blood pressure.

Investigators at Washington University School of Medicine (St. Louis, MO, USA) have been concentrating on the molecular factors regulating fructose transport, since excess dietary fructose causes both metabolic syndrome and NAFLD in rodents and humans. They previously demonstrated that female mice lacking GLUT8 exhibited impaired first-pass hepatic fructose metabolism, suggesting that fructose transport into the hepatocyte, the primary site of fructose metabolism, was in part mediated by GLUT8. In the current study, they tested the hypothesis that GLUT8 was required for hepatocyte fructose uptake and for the development of fructose-induced NAFLD.

The investigators reported in the April 18, 2014, issue of the Journal of Biological Chemistry that GLUT8 was a cell surface-localized transporter and that GLUT8 overexpression or GLUT8 siRNA-mediated gene silencing significantly induced and blocked radiolabeled fructose uptake in cultured hepatocytes. Furthermore, they presented evidence confirming diminished fructose uptake and de novo lipid synthesis in fructose-challenged GLUT8-deficient hepatocytes. Finally, livers from long term high-fructose diet-fed GLUT8-deficient mice were found to exhibit attenuated fructose-induced hepatic triglyceride and cholesterol accumulation without changes in hepatocyte insulin-stimulated Akt phosphorylation. Akt, also known as protein kinase B, is a serine/threonine-specific protein kinase that plays a key role in multiple cellular processes such as glucose metabolism, apoptosis, cell proliferation, transcription, and cell migration. GLUT8 was thus essential for hepatocyte fructose transport and fructose-induced accumulation of fats in the liver.

“We showed that GLUT8 is required for fructose to get into the liver,” said first author Dr. Brian J. DeBosch, clinical fellow in pediatric gastroenterology at Washington University School of Medicine. “If you take away or block this transporter in mice, they no longer get diet-induced fatty liver disease.”

“Fatty liver disease is a major topic of research right now,” said Dr. DeBosch. “There are competing hypotheses about the origins of metabolic syndrome. One of these hypotheses is that insulin resistance begins to develop in the liver first. The thought is if we can prevent the liver from becoming unhealthy to begin with, maybe we can block the entire process from moving forward.”

Related Links:

Washington University School of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.