We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Potential Drug Target Identified in Mouse Pancreatic Cancer Model

By LabMedica International staff writers
Posted on 19 May 2014
Print article
Cancer researchers studying pancreatic cancer (pancreatic ductal adenocarcinoma or PDAC) have identified Yes-associated protein (YAP) as a potential drug target whose inhibition would block the activity of the KRAS oncogene.

PDAC is an aggressive cancer with poor survival rates that frequently carries an oncogenic KRAS mutation. The protein product of the normal KRAS (Kirsten rat sarcoma viral oncogene) gene performs an essential function in normal tissue signaling, and the mutation of a KRAS gene is an essential step in the development of many cancers. A single amino acid substitution is responsible for the activating mutation. The transforming protein that results is implicated in various malignancies, including lung adenocarcinoma, mucinous adenoma, ductal carcinoma of the pancreas, and colorectal carcinoma.

YAP-1 is a transcriptional coactivator and its proliferative and oncogenic activity is driven by its association with the TEAD family of transcription factors, which upregulate genes that promote cell growth and inhibit apoptosis. Two splice isoforms of the YAP gene product were initially identified, named YAP1-1 and YAP1-2, which differed by the presence of an extra 38 amino acids that encoded the WW domain. Apart from the WW domain, the modular structure of YAP1 contains a proline-rich region at the very amino terminus, which is followed by a TID (TEAD transcription factor interacting domain). Next, following a single WW domain, which is present in the YAP1-1 isoform, and two WW domains, which are present in the YAP1-2 isoform, there is the SH3-BM (Src Homology 3 binding motif). Following the SH3-BM is a TAD (transcription activation domain) and a PDZ domain-binding motif (PDZ-BM).

Investigators at Georgetown University (Washington DC, USA) worked with several different mouse models that had been genetically engineered to have specific KRAS mutations with or without an additional mutation in the p53 gene.

Based on the prior observation that the abundance of YAP mRNA, which encodes Yap, a protein regulated by the Hippo pathway during tissue development and homeostasis, was increased in human PDAC tissue compared with that in normal pancreatic epithelia, the investigators blocked YAP gene activity in the KRAS mutant mice.

They reported in the May 6, 2014, online edition of the journal Science Signaling that when YAP was deleted from the pancreas in these mouse models, the progression of early neoplastic lesions to PDAC was halted without affecting normal pancreatic development and endocrine function. Thus, while suppressing YAP did not prevent pancreatic cancer from first developing, it stopped any further growth.

"We believe this is the true Achilles heel of pancreatic cancer, because knocking out YAP crushes this really aggressive cancer. This appears to be the critical switch that promotes cancer growth and progression," said senior author Dr. Chunling Yi, assistant professor of oncology at Georgetown University. "The KRAS mutation uses YAP to make cancer cells grow, so shutting down YAP defuses the mutated gene's activity."

The investigators showed that YAP was critically required for the proliferation of mutant KRAS or KRAS/p53 neoplastic pancreatic ductal cells in culture and for their growth and progression to invasive PDAC in mice. "KRAS and p53 are two of the most mutated genes in human cancers, so our hope is that a drug that inhibits YAP will work in pancreatic cancer patients — who have both mutations — and in other cancers with one or both mutations," said Dr. Yi.

Related Links:

Georgetown University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.