We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Canada to Establish “Big Data” Cloud-Computing Facility for Cancer Research

By LabMedica International staff writers
Posted on 19 May 2014
Print article
The Government of Canada announced CAD 7.3 million in funding for a collaboration—both in Canada and internationally—to develop tools that can effectively manipulate huge amounts of data to help find cures for cancer.

Recently developed technologies for genetic analysis have created almost unimaginable amounts of data, measured in petabytes. Genomic researchers are eager to analyze these data and identify genetic clues that could point to new ways to prevent or cure cancer. Such an effort, however, requires thousands of high-performance computers working in tandem, along with the yet-unavailable software tools that can coordinate such an intimidating and complex task.

Funded through Canada’s Natural Sciences and Engineering Research Council of Canada’s (NSERC; Ottawa, ON, Canada) Discovery Frontiers, the new project will develop effective new computing tools, so that researchers can study genetic data from thousands of cancers to learn more about how tumors develop, and which treatments work best.

At the center of the project will be a new cloud-computing facility, the Cancer Genome Collaboratory (Ottawa, ON, Canada), capable of processing genetic profiles gathered by the International Cancer Genome Consortium (ICGC) from tumors in some 25,000 patients worldwide. The powerful new data-mining tools are expected to be available in 2015 for beta testing by selected cancer genomics and privacy researchers. The facility is planned to be opened to the wider research community in 2016. Researchers will be able to formulate questions about cancer risk, tumor growth, and drug treatments, and extract an analysis against the data.

The NSERC initiated the project with a partnership among federal granting organizations that also include Genome Canada, the Canada Foundation for Innovation (CFI), and the Canadian Institutes of Health Research (CIHR).

The University of Chicago (IL, USA) is also providing critical computing resources for the project. Furthermore, a large initial donation of genomic data will come from the International Cancer Genome Consortium, and brings together researchers from some 16 jurisdictions worldwide. The International Cancer Genome Consortium is the largest worldwide coordinated effort to produce a catalog of genetic structure of cancer organisms. Its 10-year goal is to characterize the genetic materials from tumors in 500 patients for each of the major cancer types.

“Our government is making record investments in science and technology to create jobs, strengthen the economy and improve the quality of life of Canadians. Our investment in this new powerful, state of the art tool will allow Canadian and international researchers to greatly advance our understanding of the causes of cancer,” stated Ed Holder, Canadian Minister of State (Science and Technology).

“Canada and many other nations around the world have already invested tremendous resources in sequencing of thousands of cancer genomes, but until now there has been no viable long-term plan for storing the raw sequencing data in a form that can be easily accessed by the research community. The Cancer Genome ‘Collaboratory’ will open this incredibly important data set to researchers from laboratories large and small, enabling them to achieve new insights into the causes of cancer and to develop innovative new ways to diagnose and manage the disease,” noted Lincoln Stein, director, Informatics and Biocomputing Program, Ontario Institute for Cancer Research, and professor, department of molecular genetics, University of Toronto (Canada).

Related Links:

International Cancer Genome Consortium
Natural Sciences and Engineering Research Council


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.