We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Researchers Employ High-Energy X-Ray to Image Living Cancer Cells

By LabMedica International staff writers
Posted on 13 Mar 2014
Print article
Image: X-ray scan of biologic cells: Each pixel represents a complete diffraction image. The color indicates how strong the X-rays are scattered at this local point (Photo courtesy of Britta Weinhausen, the University of Göttingen).
Image: X-ray scan of biologic cells: Each pixel represents a complete diffraction image. The color indicates how strong the X-rays are scattered at this local point (Photo courtesy of Britta Weinhausen, the University of Göttingen).
Scientists have performed the first studies of living biologic cells using high-energy X-rays. In the future, the new technique should make it possible to study unaltered living cells at high resolution.

“The new method for the first time enables us to investigate the internal structures of living cells in their natural environment using hard X-rays,” reported the researchers from the working group. “Thanks to the ever-greater resolution of the various investigative techniques, it is increasingly important to know whether the internal structure of the sample changes during sample preparation.” Scientists are working on the new research at the Deutsches Elektronen-Synchrotron DESY (Hamburg, Germany) PETRA III research light source. The new technology reveals distinct differences in the internal cellular structure between the living and dead, chemically fixed cells. “The new method for the first time enables us to investigate the internal structures of living cells in their natural environment using hard X-rays,” emphasized the leader of the working group, Prof. Sarah Köster from the Institute for X-Ray Physics of the University of Göttingen (Germany). The researchers published their findings on February 25, 2014, in the scientific journal Physical Review Letters.

Due to newly developed analytic methods with ever-higher resolution, scientists now can study biologic cells at the level of individual molecules. The cells are frequently chemically fixed before they are studied with the help of optical X-ray or electron microscopes. The process of chemical fixation involves immersing the cells in a type of chemical preservative that fixes all of the cell’s organelles and even the proteins in place. “Minor changes to the internal structure of the cells are unavoidable in this process,” stated Prof. Köster. “In our studies, we were able to show these changes in direct comparison for the first time.”

The scientists used cancer cells from the adrenal cortex for their study. They grew the cells on a silicon nitrite substrate, which is nearly transparent to X-rays. To keep the cells alive in the experimental chamber during the research, they were supplied with nutrients, and their metabolic products were driven away via fine channels only 0.5 mm in diameter. “The biological cells are thus located in a sample environment which very closely resembles their natural environment,” explained Dr. Britta Weinhausen from Prof. Köster’s group, the article’s first author.

The research was performed at the Nanofocus Setup (GINIX) of PETRA III’s experimental station P10. The scientists used the brilliant X-ray beam from PETRA III to scan the cells to gather data about their internal nanostructure. “Each frame was exposed for just 0.05 seconds, in order to avoid damaging the living cells too quickly,” clarified coauthor Dr. Michael Sprung from DESY. “Even nanometer-scale structures can be measured with the GINIX assembly, thanks to the combination of PETRA III’s high brilliance and the GINIX setup which is matched to the source.”

The researchers studied living and chemically fixed cells using this so-called nanodiffraction technique and compared the cells’ internal structures on the basis of the X-ray diffraction images. The results showed that the chemical fixation produces noticeable differences in the cellular structure on a scale of 30–50 nm.

“Thanks to the ever-greater resolution of the various investigative techniques, it is increasingly important to know whether the internal structure of the sample changes during sample preparation,” clarified Prof. Köster.

In the future, this new technology will make it possible to examine unchanged living cells at high resolution. Although other techniques have an even higher resolution than X-ray scattering, they require a chemical fixation or complex and invasive preparation of the cells. Lower-energy, so-called soft X-rays have already been used for studies of living cells. However, the study of structures with sizes as small as 12 nm first becomes possible through the analysis of diffraction images generated using hard X-rays.

Related Links:

Deutsches Elektronen-Synchrotron DESY
Institute for X-Ray Physics of the University of Göttingen


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.