We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Highly Aligned Nanofibers Developed for Tissue Engineering Applications

By LabMedica International staff writers
Posted on 10 Mar 2014
Print article
Image: Highly aligned nanofibers created by fibroblasts form biological scaffolding that could prove an ideal foundation for engineered tissues. Stem cells placed on the scaffolding thrived, and it had the added advantage of provoking a very low immune response (Photo courtesy of Dr. Feng Zhao, Michigan Technological University).
Image: Highly aligned nanofibers created by fibroblasts form biological scaffolding that could prove an ideal foundation for engineered tissues. Stem cells placed on the scaffolding thrived, and it had the added advantage of provoking a very low immune response (Photo courtesy of Dr. Feng Zhao, Michigan Technological University).
A team of biomedical engineers has constructed a uniform highly aligned nanoscale fibrous scaffolding from extracellular matrix (ECM) naturally deposited by fibroblasts to be used for potential tissue engineering applications.

When placed in contact with ECM obtained from epithelial cells or fibroblasts, cells attach quickly, exhibit high plating and cloning efficiencies, proliferate rapidly, reach a high saturation density, exhibit lower requirements for serum and added growth factors, respond better to physiologically occurring hormones, express differentiated functions, have longer life span, undergo flattening and morphological changes, and have better plating consistency. Such cells adopt growth characteristics, morphological appearance, and biological responses that are not expressed when the same cells are maintained on artificial substrata (plastic, glass), even if coated with isolated constituents of ECM such as purified collagen or glycoproteins.

Investigators at Michigan Technological University (Houghton, USA) used synthetic nanogratings (130 nanometers in depth) to direct the growth of human dermal fibroblasts for up to eight weeks, resulting in a uniform 70 micrometer-thick fibroblast cell sheet with highly aligned cells and ECM nanofibers. A natural ECM scaffolding with uniformly aligned nanofibers about 78 nanometers in diameter was generated after removing the cellular components from the fibroblast sheet.

In a report published in the January 29, 2014, online edition of the journal Advanced Functional Materials the investigators demonstrated the excellent capacity of the ECM-scaffolding in directing and supporting alignment and proliferation of reseeded human mesenchymal stem cells (hMSCs) along the underlying fibers. Furthermore, the aligned ECM scaffolding induced a significantly lower immune response compared to its unaligned counterpart, as detected by proinflammatory cytokines secreted from macrophages.

“The cells did the work,” said senior author Dr. Feng Zhao, assistant professor of biomedical engineering at Michigan Technological University. “The material they made is quite uniform, and of course it is completely biological. We think this has great potential. I think we could use this to engineer softer tissues, like skin, blood vessels, and muscle.”

Related Links:

Michigan Technological University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.