We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




New Generation of Malaria Drugs Block Myristoylation in the Parasite

By LabMedica International staff writers
Posted on 02 Jan 2014
Print article
Image: Blood smear from a P. falciparum culture. Several red blood cells show ring stages inside them, while close to the center there is a schizont and on the left a trophozoite (Photo courtesy of Wikimedia Commons).
Image: Blood smear from a P. falciparum culture. Several red blood cells show ring stages inside them, while close to the center there is a schizont and on the left a trophozoite (Photo courtesy of Wikimedia Commons).
Researchers have identified the enzyme N-myristoyltransferase (NMT) as a target for a new generation of drugs to be used for the treatment of malaria.

Investigators from several research institutions in the United Kingdom taking part in a five-year project funded by the British Councils for Medical Research, Engineering and Physical Sciences Research, and Biotechnology and Biological Sciences Research recently described an integrated chemical biology approach that they had used to explore protein myristoylation in the major human malaria parasite Plasmodium falciparum.

N-myristoylation is a cellular process in which a myristoyl group (derived from myristic acid) is covalently attached via an amide bond to the alpha-amino group of an N-terminal amino acid of a nascent polypeptide. This modification ensures the proper function and intracellular trafficking of certain proteins. Many proteins involved in a wide variety of signaling, including cellular transformation and oncogenesis, are myristoylated.

The investigators reported in the December 22, 2013, online edition of the journal Nature Chemistry that NMT was an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and that selective inhibition of N-myristoylation led to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle.

Senior author Dr. Edward W. Tate, professor of chemistry at Imperial College London (United Kingdom), said, "Finding an enzyme that can be targeted effectively in malaria can be a big challenge. Here, we have shown not only why NMT is essential for a wide range of important processes in the parasite, but also that we can design molecules that stop it from working during infection. It has so many functions that we think blocking it could be effective at preventing long-term disease and transmission, in addition to treating acute malaria. We expect it to work not just on Plasmodium falciparum, the most common malaria parasite, but the other species as well. We need to do some more work in the lab to find the best candidate molecule to take into clinical trials, but hopefully we will be ready to do that within a few years."

Related Links:

Imperial College London


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.