We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Nanocarrier Designed to Target Drug Delivery to Cancer Cells

By LabMedica International staff writers
Posted on 13 Nov 2013
Print article
Image: The first-of-its-kind nanostructure is unusual because it can carry a variety of cancer-fighting materials on its double-sided “Janus” surface and within its porous interior Photo courtesy of UC’s Dr. Donglu Shi).
Image: The first-of-its-kind nanostructure is unusual because it can carry a variety of cancer-fighting materials on its double-sided “Janus” surface and within its porous interior Photo courtesy of UC’s Dr. Donglu Shi).
A novel nanostructure can, because of its dual-surface structure, serve as an improved “all-in-one tool” in the fight against cancer.

The nanostructure was developed by a team of international researchers, including those at the University of Cincinnati (UC; OH, USA), and has the potential to improve all-in-one detection, diagnoses, and drug-delivery treatment of cancer cells.

The first-of-its-kind nanostructure is remarkable because it can carry a range of cancer-fighting substance on its double-sided “Janus” surface and within its porous interior. Because of its unique structure, the nanocarrier can do all of the following: (1) Transport cancer-specific detection nanoparticles and biomarkers to a site within the body, e.g., the prostate or the breast. This promises earlier diagnosis than is possible with current applications. (2) Attach fluorescent marker materials to illuminate specific cancer cells, so that they are easier to find for treatment, whether drug delivery or surgery. (3) Deliver anticancer drugs for pinpoint targeted treatment of cancer cells, which should result in few drug side effects. Currently, a cancer treatment such as chemotherapy affects not only cancer cells but healthy cells as well, leading to serious and often incapacitating side effects.

This research’s findings were presented on October 30, 2013, at the annual Materials Science & Technology Conference in Montreal (QC, Canada). The Janus nanostructure is unusual in that, normally, these structures (much smaller than a single cell) have limited surface. This makes is difficult to carry multiple components, e.g., both cancer detection and drug-delivery materials. The Janus nanocomponent, on the other hand, has functionally and chemically distinct surfaces to allow it to carry multiple components in a single assembly and function in an intelligent manner.

“In this effort, we’re using existing basic nanosystems, such as carbon nanotubes, graphene, iron oxides, silica, quantum dots, and polymeric nanomaterials in order to create an all-in-one, multidimensional, and stable nanocarrier that will provide imaging, cell targeting, drug storage and intelligent, controlled drug release,” said UC’s Dr. Donglu Shi, adding that the nanocarrier’s potential is currently greatest for cancers that are close to the body’s surface, such as breast and prostate cancer.

If such nanotechnology can soon become the standard for cancer detection, it promises earlier, more rapid, and more effective diagnosis at lower cost than current technology. The most common technology used today in cancer diagnosis are magnetic resonance imaging (MRI); positron emission tomography (PET); and computed tomography (CT) imaging, however, they are expensive and time-consuming to use.

Furthermore, when it comes to drug delivery, nanotechnology such as the Janus structure would better regulate the drug dose, since that dose would be targeted to cancer cells. In this way, anticancer drugs could be used much more effectively, which would lower the total amount of drug administered.

Related Links:

University of Cincinnati


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.