We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Oscillating Pulsed Electric Fields Strike Major Blow to Resistant Bacteria and Cancer

By LabMedica International staff writers
Posted on 29 Oct 2013
Print article
Image: Time lapse photos of three leukemia cells being treated with OPEF. Two of the three cells are literally shattered by the treatment (Photo courtesy of PRNewsFoto/Novobiotronics Inc.).
Image: Time lapse photos of three leukemia cells being treated with OPEF. Two of the three cells are literally shattered by the treatment (Photo courtesy of PRNewsFoto/Novobiotronics Inc.).
Oscillating pulsed electric field (OPEF) technology is delivering a one-two punch against cancer and antibiotic-resistant bacteria using a pulsed electronic signal that destroys cancer cells and disables antibiotic resistance in deadly methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas bacteria.

Novobiotronics (Saratoga Springs, NY, USA), a world leader in research on the biologic effects of OPEFs as a future nontoxic medical treatment, was the first company to confirm the capability of OPEFs to destroy 30%–60% of leukemia cells. In laboratory research, OPEF also demonstrated an ability to slow cancer growth by up to 60%. OPEF has also shown an ability to disarm antibiotic resistance in the lethal bacteria MRSA, rendering it susceptible to typically available antibiotics as well as inhibiting its growth.

Novobiotronics Inc., a nonprofit educational and scientific research, has report a significant breakthrough in the battle against cancer and harmful antibiotic-resistant strains of bacteria including the “superbug” deadliness of MRSA, and Pseudomonas aeruginosa (PS).

Anthony Holland, president of Novobiotronics, reported the findings of recent laboratory research done in collaboration with the State University of New York (Stony Brook, USA) that their new electronic treatment of antibiotic resistant MRSA and PS has both a bacteriostatic effect as well as a bactericidal effect when used in combination with tiny amounts of conventional antibiotics to which the deadly organisms are otherwise normally resistant.

The current standard medical treatment of antibiotic-resistant bacterial infections utilizes combinations of different types of antibiotics, but those combinations can result in very serious and even dangerous side effects. Physicians even induce some patients into a coma to reduce the severity of the drug side effects.

Novobiotronics’ new technology involves the use of a “plasma antenna,” a type of a helium gas filled fluorescent light used to broadcast oscillating pulsed electric fields at cancer cells and bacteria. These OPEFs can kill cancer cells, slow the growth rate of the cancer cells and bacteria greatly, and actually quash the bacteria’s ability to resist antibiotics. When used in combination with very small amounts of a traditional antibiotic, OPEF has demonstrated an ability to destroy MRSA and PS bacteria.

Novobiotronics’ collaborators from the State University of New York presented their joint findings at a September 2013 meeting of the American Society for Microbiology, held in Denver (CO, USA).

Related Links:

Novobiotronics
State University of New York


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.