We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Loss of STAG2 Gene Improves Bladder Cancer Prognosis

By LabMedica International staff writers
Posted on 23 Oct 2013
Print article
Image: This image shows a bladder tumor sample containing mutations in the STAG2 gene (Photo courtesy of the Spanish National Cancer Research Center).
Image: This image shows a bladder tumor sample containing mutations in the STAG2 gene (Photo courtesy of the Spanish National Cancer Research Center).
Results obtained during a study conducted by Spanish cancer researchers indicated that mutations of the STAG2 (stromal antigen 2) gene suppressed development of urothelial bladder cancer (UBC) by acting through mechanisms that were different from the gene's role in preventing aneuploidy.

The protein encoded by the STAG2 gene is a subunit of the cohesin complex, which regulates the separation of sister chromatids during cell division. Targeted inactivation of this gene results in chromatid cohesion defects and aneuploidy, suggesting that genetic disruption of cohesin is a cause of aneuploidy in human cancer.

Bladder cancer represents a serious public health problem in many countries, especially in Spain, where 11,200 new cases are recorded every year, one of the highest rates in the world. The majority of these tumors have a good prognosis for five-year survival after diagnosis, and most have not infiltrated the bladder muscle at the time of diagnosis.

Investigators at the Spanish National Cancer Research Center (Madrid) performed an exome sequencing study to identify genes linked to noninfiltrating bladder cancer. They analyzed the exome from 17 bladder cancer patients and subsequently validated the data by the analyzing a specific group of genes in 60 additional patients.

Results published in the October 13, 2013, online edition of the journal Nature Genetics revealed a set of previously unidentified genes mutated in these tumors coding for proteins involved in chromatin modification (MLL2, ASXL2, and BPTF), cell division (STAG2, SMC1A, and SMC1B) and DNA repair (ATM, ERCC2, and FANCA). STAG2 was significantly and commonly mutated or lost in UBC, mainly in tumors of low stage or grade, and its loss was associated with improved outcome.

Loss of STAG2 expression was often observed in chromosomally stable tumors, and STAG2 knockdown in bladder cancer cells did not increase aneuploidy. Insertion of STAG2 into nonexpressing cells led to reduced colony formation. Furthermore, analysis of bladder tumor tissue from more than 670 patients indicated that alterations in STAG2 were associated with a better prognosis.

"We found up to nine altered genes that had not been described before in this type of tumor, and of these we found that STAG2 was inactive in almost 40% of the least aggressive tumors," said senior author Dr. Francisco X. Real, head of the epithelial carcinogenesis group at the Spanish National Cancer Research Centre. "Some of these genes are involved in previously undescribed genetic pathways in bladder cancer, such as cell division and DNA repair; also, we confirmed and extended other genetic pathways that had previously been described in this cancer type, such as chromatin remodeling."

Related Links:

Spanish National Cancer Research Center


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.