We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




siRNA Screen Identifies Potential Cystic Fibrosis Drug Target

By LabMedica International staff writers
Posted on 26 Sep 2013
Print article
Image: Inhibiting DGKi reduces ENaC activity, reversing the effects of cystic fibrosis. In this assay, the green glow dims more in cells with active ENaC (bottom), so the scientists screened for cases where the cells’ glow barely changed (top) (Photo courtesy of Dr. Rainer Pepperkok, European Molecular Biology Laboratory).
Image: Inhibiting DGKi reduces ENaC activity, reversing the effects of cystic fibrosis. In this assay, the green glow dims more in cells with active ENaC (bottom), so the scientists screened for cases where the cells’ glow barely changed (top) (Photo courtesy of Dr. Rainer Pepperkok, European Molecular Biology Laboratory).
A large-scale screen combining high-content live-cell microscopy and small interfering RNAs (siRNAs) in human airway epithelial cells from patients with cystic fibrosis (CF) has pinpointed a promising target for drug treatment.

Cystic fibrosis is an inherited disease caused by a mutation in the CFTR (cystic fibrosis transmembrane conductance regulator) gene that affects the body's ability to move salt and water in and out of cells. CTFR codes for an ABC transporter-class ion channel, ENaC, which transports chloride and thiocyanate ions across epithelial cell membranes. Mutations of the CFTR gene disrupt the functioning of ENaC chloride ion channels in these cell membranes, leading to cystic fibrosis.

All disease-causing mutations in the CFTR gene prevent the channel from functioning properly, leading to a blockage of the movement of salt and water into and out of cells. As a result of this blockage, cells that line the passageways of the lungs, pancreas, and other organs produce abnormally thick, sticky mucus. This mucus obstructs the airways and glands, causing the characteristic signs and symptoms of cystic fibrosis. While thin mucus can be removed by cilia, thick mucus cannot be removed by cilia, so it traps bacteria that give rise to chronic infections. The only drug currently available that directly counteracts a cystic fibrosis-related mutation only works on the 3% of patients that carry one specific mutation out of the almost 2000 CFTR mutations detected so far.

Investigators at the European Molecular Biology Laboratory (Heidelberg, Germany) and their colleagues at the University of Lisbon (Portugal) sought to develop a global understanding of molecular regulators of ENaC traffic and function and to identify candidate CF drug targets. To this end, they performed a large-scale screen combining high-content live-cell microscopy and siRNAs in human airway epithelial cells.

A study published in the September 12, 2013, online edition of the journal Cell revealed that the investigators screened over 6,000 genes and identified over 1,500 candidates, evenly divided between channel inhibitors and activators.

Genes in the phosphatidylinositol pathway were enriched on the primary candidate list, and these, along with other ENaC activators, were examined further with secondary siRNA validation. Subsequent detailed investigation revealed ciliary neurotrophic factor receptor (CNTFR) as an ENaC modulator and showed that inhibition of DGKi (diacylglycerol kinase, iota), a protein involved in phosphatidylinositol biphosphate (PiP2) metabolism, downgraded ENaC activity, leading to normalization of both Na+ and fluid absorption in CF airways to non-CF levels in primary human lung cells from CF patients.

“Inhibiting DGKi seems to reverse the effects of cystic fibrosis, but not block ENaC completely,” said senior author Dr. Margarida Amaral, professor of chemistry and biochemistry at the University of Lisbon, “indeed, inhibiting DGKi reduces ENaC activity enough for cells to go back to normal, but not so much that they cause other problems, like pulmonary edema.”

Related Links:

European Molecular Biology Laboratory
University of Lisbon


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.