We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Compound Found to Reverse Down Syndrome-Like Learning Deficits in Mice

By LabMedica International staff writers
Posted on 23 Sep 2013
Print article
Researchers have identified a compound that dramatically boosts memory and learning when administered to mice with a Down syndrome-like disorder on the day of their birth. They reported that the single-dose treatment appears to enable the cerebellum of the rodents’ brains to grow to a normal size.

The scientists cautioned that use of the compound, a small molecule known as a sonic hedgehog pathway agonist, has not been shown to be safe to try in individuals with Down syndrome, but say their research has potential for developing similar drug.

The study’s findings were published in the September 4, 2012, issue of the journal Science Translational Medicine. “Most people with Down syndrome have a cerebellum that’s about 60% of the normal size,” stated Roger Reeves, PhD, a professor in the McKusick-Nathans Institute of Genetic Medicine at the Johns Hopkins University School of Medicine (Baltimore, MD, USA). “We treated the Down syndrome-like mice with a compound we thought might normalize the cerebellum’s growth, and it worked beautifully. What we didn’t expect were the effects on learning and memory, which are generally controlled by the hippocampus, not the cerebellum.”

Dr. Reeves has spent his career studying Down syndrome, a disorder that occurs when people have three, instead of the typical two, copies of chromosome 21. As a result of this trisomy, individuals with Down syndrome have extra copies of the more than 300 genes housed on that chromosome, which leads to intellectual disabilities, distinctive facial features and sometimes heart problems and other health effects. Because the disorder involves so many genes, developing therapy for it is a daunting task, according to Dr. Reeves.

Dr. Reeves and his colleagues, for the current research used mice that were genetically engineered to have extra copies of about half of the genes found on human chromosome 21. The mice have many features similar to those of people with Down syndrome, including comparatively small cerebellums and difficulty learning and remembering how to navigate through a recognizable space. (In the case of the mice, this was evaluated by tracking how easily the animals located a platform while swimming in a so-called water maze.)

Based on earlier research on how Down syndrome affects brain development, the researchers tried supercharging a biochemical chain of events known as the sonic hedgehog pathway that stimulate growth and development. They used an agent—a sonic hedgehog pathway agonist—that could accomplish the feat. The compound was injected into the Down syndrome-like mice just once, on the day of birth, while their cerebellums were still developing. “We were able to completely normalize growth of the cerebellum through adulthood with that single injection,” Dr. Reeves noted.

However, the researcher went beyond measuring the cerebellums, also looking for changes in behavior. “Making the animals, synthesizing the compound and guessing the right dose were so difficult and time-consuming that we wanted to get as much data out of the experiment as we could,” Dr. Reeves said. The scientists assessed the treated mice against untreated Down syndrome-like mice and healthy mice in a host of ways, and found that the treated mice did just as well as the normal ones on the water maze test.

Dr. Reeves noted that additional studies are needed to learn why exactly the treatment works, because their study of specific cells in the hippocampus known to be involved in learning and affected by Down syndrome appeared unaffected by the sonic hedgehog agonist treatment. One idea is that the treatment improved learning by strengthening communication between the cerebellum and the hippocampus, he noted.

As for the agent’s potential to become a drug for human use, the difficulty, according to Dr. Reeves, is that changing an important biologic chain of events such as sonic hedgehog would in all probability have many unintended effects throughout the body, such as increasing the risk of cancer by triggering uncontrolled growth. But now that the investigators have seen the potential of this approach, they will look for more targeted ways to safely control the power of sonic hedgehog in the cerebellum. Even if his team succeeds in developing a clinically useful drug, however, Dr. Reeves warned that it would not represent a “cure” for the learning and memory-related effects of Down syndrome. “Down syndrome is very complex, and nobody thinks there’s going to be a silver bullet that normalizes cognition,” he concluded. “Multiple approaches will be needed.”

Related Links:

Johns Hopkins University School of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.