We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New Genome Engineering Technique Eases Gene Repair in Human Pluripotent Stem Cells

By LabMedica International staff writers
Posted on 29 Aug 2013
Print article
Image: RNA-Guided Nucleases (RGNs), based on naturally occurring Type II CRISPR-Cas systems, are programmable endonucleases that can be used to perform targeted genome editing (Photo courtesy of Addgene).
Image: RNA-Guided Nucleases (RGNs), based on naturally occurring Type II CRISPR-Cas systems, are programmable endonucleases that can be used to perform targeted genome editing (Photo courtesy of Addgene).
An RNA-guided, DNA-cleaving interference pathway from bacteria [the type II clustered, regularly interspaced, short palindromic repeats (CRISPR)-CRISPR-associated (Cas) pathway] has been adapted for use in eukaryotic cells, greatly facilitating genome editing.

The CRISPR/Cas (CRISPR associated) system is a new genome-engineering technology recently developed from prokaryotes' adaptive immune response systems. The CRISPR system uses a short, noncoding RNA (crRNA) to target a human codon-optimized Cas9 nuclease to complementary (protospacer) sequences in the host genome. These sequences or arrays are composed of direct repeats that are separated by similarly sized nonrepetitive spacers. CRISPR arrays, together with a group of associated proteins, confer resistance to phages, possibly by an RNA-interference-like mechanism.

Investigators at the University of Wisconsin (Madison USA) and their colleagues at Northwestern University (Evanston, IL, USA) used a CRISPR-Cas system identified in the bacterium Neisseria meningitidis, which is distinct from the commonly used Streptococcus pyogenes system, to demonstrate efficient genome engineering in human pluripotent stem cells (hPSCs).

Heretofore, only two CRISPR-Cas systems (from S. pyogenes and S. thermophilus), each with their own distinct targeting requirements and limitations, had been developed for genome editing. In addition, only limited information existed regarding homology-directed repair (HDR)-mediated gene targeting using long donor DNA templates in hPSCs with these systems.

The investigators wrote in the August 12, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that by employing a distinct CRISPR-Cas system from N. meningitidis, they were able to demonstrate efficient targeting of an endogenous gene in three hPSC lines using HDR. The Cas9 RNA-guided endonuclease from N. meningitidis (NmCas9) recognized a protospacer adjacent motif (PAM) different from those recognized by Cas9 proteins from S. pyogenes and S. thermophilus (SpCas9 and StCas9, respectively). Similar to SpCas9, NmCas9 was able to use a single-guide RNA (sgRNA) to direct its activity. Because of its distinct protospacer adjacent motif, the N. meningitidis CRISPR-Cas machinery increased the sequence contexts amenable to RNA-directed genome editing.

“Human pluripotent stem cells can proliferate indefinitely and they give rise to virtually all human cell types, making them invaluable for regenerative medicine, drug screening, and biomedical research,” said senior author Dr. James A. Thomson, professor of embryonic stem cell biology at the University of Wisconsin. “Our collaboration with the Northwestern team has taken us further toward realizing the full potential of these cells because we can now manipulate their genomes in a precise, efficient manner. With this system, there is the potential to repair any genetic defect, including those responsible for some forms of breast cancer, Parkinson’s, and other diseases.”

Related Links:
University of Wisconsin
Northwestern University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.