We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Neurons Derived from the Skin Cells of Epilepsy Patients Embody New Platform for Drug Testing

By LabMedica International staff writers
Posted on 08 Aug 2013
Print article
Image: This diagram shows the process by which scientists can take skin cells from patients with epilepsy, convert them to stem cells, and then create neurons (brain nerve cells) from them. The induced neurons contain the same genetic mutation(s) carried by the patients (Photo courtesy of the University of Michigan Medical School).
Image: This diagram shows the process by which scientists can take skin cells from patients with epilepsy, convert them to stem cells, and then create neurons (brain nerve cells) from them. The induced neurons contain the same genetic mutation(s) carried by the patients (Photo courtesy of the University of Michigan Medical School).
Stem cells derived from skin taken from juvenile epilepsy patients were induced to mature into cultures of neurons that were developed into a human-based system for the study of the genetic factors that underlie the disorder and for development of drugs to control the disease.

Investigators at the University of Michigan Medical School (Ann Arbor, USA) derived forebrain-like pyramidal- and bipolar-shaped neurons from two Dravet syndrome (DS) subjects and three human controls by iPSC (induced pluripotent stem cell) reprogramming of fibroblasts. DS is a severe form of childhood epilepsy typically caused by dominant mutations in the SCN1A (sodium channel, voltage-gated, type I, alpha subunit) gene encoding the voltage-gated sodium channel Nav1.1.

DS and control iPSC-derived neurons were compared using whole-cell patch clamp recordings. Sodium current density and intrinsic neuronal excitability were also examined. Results published in the July 2, 2013, online edition of the journal the Annals of Neurology revealed that neural progenitors from DS and human control iPSCs displayed a forebrain identity and differentiated into bipolar- and pyramidal-shaped neurons.

DS patient-derived neurons showed increased sodium currents in both bipolar- and pyramidal-shaped neurons. Consistent with increased sodium currents, both types of DS patient-derived neurons showed spontaneous bursting and other evidence of hyperexcitability that could potentially set off seizures. Neurons derived from the skin cells of individuals without epilepsy displayed none of this abnormal activity.

"With this technique, we can study cells that closely resemble the patient's own brain cells, without doing a brain biopsy," said senior author Dr. Jack M. Parent, professor of neurology at the University of Michigan Medical School. "It appears that the cells are overcompensating for the loss of channels due to the mutation. These patient-specific induced neurons hold great promise for modeling seizure disorders, and potentially screening medications."

The findings obtained during this study revealed a previously unrecognized cell-autonomous epilepsy mechanism underlying DS, and offer a platform for screening new antiepileptic therapies.

Related Links:

University of Michigan



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.