We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




New Revelations from 3D Map of Blood Vessels in Cerebral Cortex

By LabMedica International staff writers
Posted on 26 Jun 2013
Print article
Within a sensory area of the brain’s mammalian brain loop, blood vessels have been shown to connect in surprising ways, a new imaging map has revealed.

The study, published June 9, 2013, in the early online edition of the journal Nature Neuroscience, reported on vascular architecture within a well-known area of the cerebral cortex and examines what that structure means for functional imaging of the brain and the onset of a kind of dementia. Dr. David Kleinfeld, professor of physics and neurobiology at the University of California, San Diego (UCSD; USA), and colleagues mapped blood vessels in an area of the mouse brain that receives sensory signals from the whiskers.

The organization of neural cells in this brain region has been well understood, as was a pattern of blood vessels that plummet from the surface and return from deep of the brain, but the network in between was unexplored. Nevertheless, these tiny arterioles and venules deliver oxygen and nutrients to energy-hungry brain cells and carry away wastes.

The investigators traced this precise network by filling the vessels with a fluorescent gel. Then, using an automated system developed by coauthor Dr. Philbert Tsai, which removes thin layers of tissue with a laser while taking a series of images to reconstructed the three-dimensional (3D) network of tiny vessels. The project centered on a region of the cerebral cortex in which the nerve cells are so well known that they can be traced to individual whiskers. These neurons gather in “barrels,” one per whisker, an organizational pattern evidenced in other sensory areas as well.

The scientists expected each whisker barrel to correlate with its own blood supply, but that was not the case. The blood vessels do not line up with the functional structure of the neurons they feed. “This was a surprise, because the blood vessels develop in tandem with neural tissue,” Dr. Kleinfeld said. Instead, microvessels beneath the surface loop and connect in patterns that do not obviously correspond to the barrels.

To search for patterns, the researchers employed a type of mathematics called graph theory, which describes systems as interconnected nodes. Using this strategy, no concealed subunits arose, revealing that the mesh undeniably forms a continuous network they call the “angiome.”

The vascular maps traced in this study raise a question of what the researchers are in reality visualizing in a widely used brain imaging modality called functional magnetic resonance imaging (MRI), which in one form measures brain activity by recording changes in oxygen levels in the blood. The idea is that activity will locally deplete oxygen. Therefore, the researchers shook whiskers on individual mice and discovered that optical signals linked with depleted oxygen centered on the barrels, where electrical recordings confirmed neural activity. Hence, brain mapping does not depend on a modular arrangement of blood vessels.

The researchers also calculated patterns of blood flow based on the diameters and connections of the vessels and questioned how this would change if a feeder arteriole were blocked. The map allowed them to detect “perfusion domains,” which predict the volumes of lesions that result when a clot occludes a vessel. Significantly, they were able to build a physical model of how these lesions form, as may occur in cases of human dementia.

Related Links:

University of California, San Diego


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.