We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Global Bioinformatics Market Expected to Hit USD 7.5 Billion by 2017

By LabMedica International staff writers
Posted on 20 May 2013
Print article
The necessity to implement more cost-effective and productive techniques of commercializing proprietary data has driven the bioinformatics market.

According to a recent report from the economic and market research company BBC Research (Wellesley, MA, USA), the United States accounts for 52.8% of global sales, making it the largest market segment, whereas analytic services and data-analysis software make up the strongest growing segment increasing at a 20.3% compound annual growth rate (CAGR) through 2017.

The global bioinformatics market was valued at almost USD 3.2 billion in 2012 and is predicted to grow to nearly USD 7.5 billion by 2017. The market attracts considerable funding from central governments and is fueled by applications across a variety of sectors, including biotechnology, pharmaceutical research and development, agriculture, food safety, chemicals, manufacturing, and more recently, clinical genomics.

Growth in the market has been driven by the industries’ need to adopt more cost-effective and productive methods for commercializing proprietary information. Companies are looking for suppliers that can provide complete integration of data infrastructure, which includes data sharing, data security, customization, data searching, and analysis.

Accounting for 52.8% of global sales, the United States holds the largest segment of the bioinformatics market, followed by Europe and the Asia-Pacific region. Most of revenues are generated from analysis software and analytic services, which account for nearly 47.6% of revenues, although data-analysis software and analytic services comprise the strongest growing segment with a 2012-2017 compound annual growth rate (CAGR) of 20.3%.

Bioinformatics tools and services play important roles in all aspects of drug discovery and development, helping to design drugs, predict drug metabolism and toxicity, and model drug-gene or drug-protein interactions. The adoption of high-throughput technologies (e.g., next-generation sequencing [NGS], RNA-Seq, microarrays, nanopore sequencing) alongside data-mining software and in silico computational, mathematic modeling, and biosimulation tools are all being applied to increase speed and accuracy, as well as to reduce the time and costs associated with data analysis and interpretation. Moreover, researchers are utilizing a more holistic systems biology approach and incorporating data from other scientific disciplines, including pharmacogenomics, toxicogenomics, epigenomics, and cheminformatics, to examine complex interactions within biologic systems and to enhance the diagnosis and treatment of diseases.

In the postgenomic era, gathering biologic data is no longer a bottleneck for scientific researchers. The major hurdle remains in the efficient organization, analysis, and interpretation of the data. There are currently more than 3,000 archival and commercial databases, including large central data repositories such as GenBank (NCI), EMBl-EBI, and DDBJ. The establishment, maintenance and open access of large datasets has been important in driving this field forward, as they have allowed researchers throughout the world to find new ways to analyze and interpret information into new knowledge. The bioinformatic tools and database services segment of the market generated more than USD 1.5 billion in 2012, and is forecast to grow to USD 3.4 billion by 2017, with a 2012-2017 CAGR of 17.9%.

Raw data are worthless without a framework. The ultimate goal of bioinformatics is to gather knowledge from large-scale data. There are currently hundreds of software tools available online, many of which were developed by leading academic institutions and are freely available, enabling researchers to undertake sequencing, alignment, structure, and function analysis for a range of biologic data.

Commercial software platforms are available that can handle that analysis of petabytes of NGS data such as Astrid’s GenoMiner, Biobase BD’s Genome Trax, GeneCodes Corp.’s SeQuencher, and SoftGenetics’ NextGENe. More comprehensive software solutions are available from some of the larger players that enable analysis, visualization, and formulation of diverse datasets to improve dissemination of results to researchers. These include Accelrys’, Pipeline Pilot, DNAStars’ Lasergene Suite, and Genomatix’s Software Suite, among others. The data analysis and software market generated more than USD 1.1 billion in 2012, and it is forecast to grow to nearly USD 2.9 billion by 2017, with a 2012-2017 CAGR of 20.3%.

More data are being collected than can be physically stored; the storage gap is widening, and selecting which data to archive has become a major issue. During the last 30 years, information technology (IT) infrastructure has become more integrated, and it has rapidly evolved from a computer cluster model to a cloud-computing platform that allows computational capacity to be purchased as a service from a cloud-computing provider. Researchers can tap into a network of virtual machines (VMs) without the need to own or maintain their own hardware. The IT hardware and infrastructure market generated nearly USD 532 million in 2012, and is forecast to grow to nearly USD 1.2 billion by 2017, with a 2012-2017 CAGR of 17.2%.

Related Links:

BBC Research



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.