We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Antiangiogenic Monoclonal Antibody Slows Tumor Growth in Breast Cancer and Angiosarcoma Models

By LabMedica International staff writers
Posted on 29 Apr 2013
Print article
A monoclonal antibody specific for a protein linked to the angiogenesis required for tumor growth was shown to have potent antitumor and antiangiogenic properties both in vitro and in mouse xenograft models.

Investigators at the University of North Carolina (Chapel Hill, USA) had found previously that secreted frizzled-related protein 2 (SFRP2) was overexpressed in human angiosarcoma and breast cancer and stimulated angiogenesis via activation of the calcineurin/NFATc3 pathway. Subsequently, SFRP2 was found in a variety of other human cancers, including prostate, lung, pancreas, ovarian, colon, and kidney.

In the current study, the investigators assessed the effects of a novel monoclonal antibody (mAb) that blocked SFRP2 expression. They examined the effect of this antagonism on tumor growth and Wnt-signaling and evaluated whether SFRP2 would be a viable therapeutic target.

The antiangiogenic and antitumor properties of the SFRP2 mAb were determined using in vitro proliferation, migration, and tube formation assays and in vivo angiosarcoma and triple-negative breast cancer models. Wnt-signaling was assessed in endothelial and tumor cells treated with the SFRP2 mAb using Western blotting. Pharmacokinetic and biodistribution data were generated in tumor bearing and control mice.

Results published in the April 19, 2013, online edition of the journal Molecular Cancer Therapeutics revealed that the SFRP2 mAb induced antitumor and antiangiogenic effects in vitro and inhibited activation of beta-catenin and nuclear factor of activated T-cells c3 (NFATc3) in endothelial and tumor cells. An increase in beta-catenin production has been noted in those people with basal cell carcinoma and leads to the increase in proliferation of related tumors.

Treatment of SVR angiosarcoma allografts in nude mice with the SFRP2 mAb decreased tumor volume by 58% while treatment of MDA-MB-231 breast carcinoma xenografts decreased tumor volume by 52%. Pharmacokinetic studies showed that the antibody was long circulating in the blood and preferentially accumulated in SFRP2-positive tumors.

“We previously microdissected blood vessels from malignant human breast cancers and compared gene expression to blood vessels microdissected from normal tissue. We found a number of genes that were highly over-expressed in the malignant blood vessels compared to normal. One of those genes was SFRP2,” said senior author Dr. Nancy Klauber-DeMore, professor of surgery at the University of North Carolina.

“We showed in this paper that targeting SFRP2 with a monoclonal antibody in preclinical models inhibits tumor growth. This demonstrates that SFRP2 is a therapeutic target for cancer,” said Dr. Klauber-DeMore. “Demonstrating that a monoclonal antibody to SFRP2 inhibits tumor growth in preclinical models opens up a new potential for drug development. This treatment is not presently available for human studies, but our efforts are focused on obtaining funding for further drug development that would lead to a clinical trial.”

Related Links:

University of North Carolina


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.