We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




"Transparent Brain" Expected to Yield Breakthroughs in Understanding Neurological Disorders

By LabMedica International staff writers
Posted on 25 Apr 2013
Print article
Replacement of the brain's fat content with a clear, permeable gel allows optical, fluorescent, and electron microscope studies as well as immunohistochemical analyses to be carried out on intact tissues that have not been damaged or modified by sample preparation techniques.

Investigators at Stanford University (Palo Alto, CA, USA) developed a novel method for creating a "transparent" brain by replacing fat tissue with a clear, permeable gel. The technique was based on infusing a cocktail of reagents, including a plastic-like polymer and formaldehyde, into a mouse brain. When heated, the solution formed a transparent, porous gel that biochemically integrated with, and physically supported, the brain tissue while excluding the lipids, which were removed via an electrochemical process. The process was named CLARITY for Clear Lipid-exchanged Anatomically Rigid Imaging/Immunostaining-compatible Tissue Hydrogel.

A report in the April 10, 2013, online edition of the journal Nature revealed initial results obtained with a CLARITY-treated mouse brain. These results showed intact-tissue imaging of long-range projections, local circuit wiring, cellular relationships, subcellular structures, protein complexes, nucleic acids, and neurotransmitters. CLARITY also enabled intact-tissue in situ hybridization, immunohistochemistry with multiple rounds of staining and de-staining in nonsectioned tissue, and antibody labeling throughout the intact adult mouse brain.

In addition, CLARITY enabled fine structural analysis of clinical samples, including nonsectioned human tissue from a formaldehyde-preserved postmortem human brain from a person who had autism, establishing a path for the transmutation of human tissue into a stable, intact, and accessible form suitable for probing structural and molecular underpinnings of physiological function and disease.

“CLARITY will help support integrative understanding of large-scale, intact biological systems,” said senior author Dr. Karl Deisseroth, professor of bioengineering and of psychiatry and behavioral sciences at Stanford University. “It provides access to subcellular proteins and molecules, while preserving the continuity of intact neuronal structures such as long-range circuit projections, local circuit wiring, and cellular spatial relationships.”

Related Links:
Stanford University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.