We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




MicroRNA Blocks Tumor Suppressor Gene Activity in Prostate Cancer Cells

By LabMedica International staff writers
Posted on 22 Apr 2013
Print article
The microRNA miR-125b is highly expressed in human prostate cancer where it blocks the activity of tumor suppressor genes by repressing the protein product of the ink4a/ARF locus, p14ARF.

p14ARF is an alternate reading frame (ARF) product of the CDKN2A (cyclin-dependent kinase inhibitor 2A ) locus. Both p16INK4a and p14ARF are involved in cell cycle regulation. p14ARF inhibits Mdm2 (mouse double minute 2 homolog), thus promoting p53, which promotes p21 activation, which then binds and inactivates certain cyclin-CDK complexes, which would otherwise advance transcription of genes that would carry the cell through the G1/S checkpoint of the cell cycle. Loss of p14ARF by a homozygous mutation in the CDKN2A (INK4A) gene will lead to elevated levels in Mdm2 and, therefore, loss of p53 function and cell cycle control.

Investigators at the University of California, Davis (USA) worked with two prostate cancer cell lines, LNCaP (wild type-p53) and 22Rv1 (both wild type and mutant p53), as well as in the PC-346C prostate cancer xenograft model that lentivirally overexpressed miR-125b.

They reported in the April 9, 2013, online edition of the journal PLOS One that miR-125b modulated the p53 network by hindering the down-regulation of Mdm2, thereby affecting p53 and its target genes p21 and Puma to a degree sufficient to inhibit apoptosis. In contrast, treatment of prostate cancer cells with an inhibitor of miR-125b (anti-miR-125b) resulted in increased expression of p14ARF, decreased level of Mdm2, and induction of apoptosis.

Overexpression of miR-125b in p53-deficient PC3 cells induced down-regulation of p14ARF, which led to increased cell proliferation through a p53-independent manner. Therefore, the investigators concluded that miR-125b acted as an oncogene, which regulated p14ARF/Mdm2 signaling and stimulated proliferation of prostate cancer cells through a p53-dependent or p53-independent function.

“Our latest research demonstrates that elevated MiR-125b in prostate cancer cells is a mechanism that thwarts our efforts to eradicate the disease,” said senior author Dr. Ralph de Vere White, professor of urology at the University of California, Davis. “These latest findings reinforce our belief that miR-125b has potential as a therapeutic target for the management of patients with metastatic prostate cancer. We are pleased that these data build so successfully on our earlier studies of miR-125b and bring us closer to patient treatment.”

Related Links:

University of California, Davis


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.