We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Automated Liquid Handling Platforms Boost Productivity of Synthetic Biology Researchers

By LabMedica International staff writers
Posted on 21 Feb 2013
Print article
Image: The Freedom EVO workstation (Photo courtesy of Tecan).
Image: The Freedom EVO workstation (Photo courtesy of Tecan).
Use of automated robotic liquid handling workstations is giving a dramatic push to development efforts in the exciting new field of synthetic biology.

Synthetic biology is the design and construction of new biological entities such as enzymes, genetic circuits, and cells, or the redesign of existing biological systems. Synthetic biology builds on the advances in molecular, cell, and systems biology and seeks to transform biology in the same way that synthesis transformed chemistry and integrated circuit design transformed computing.

The element that distinguishes synthetic biology from traditional molecular and cellular biology is the focus on the design and construction of core components (parts of enzymes, genetic circuits, metabolic pathways, etc.) that can be modeled, understood, and tuned to meet specific performance criteria, and the assembly of these smaller parts and devices into larger integrated systems that solve specific problems. Just as engineers now design integrated circuits based on the known physical properties of materials and then fabricate functioning circuits and entire processors (with relatively high reliability), synthetic biologists will soon design and build engineered biological systems. Unlike many other areas of engineering, biology is nonlinear and less predictable, and there is less knowledge of the parts and how they interact. Hence, the overwhelming physical details of natural biology (gene sequences, protein properties, biological systems) must be organized and recast via a set of design rules that hide information and manage complexity, thereby enabling the engineering of many-component integrated biological systems. It is only when this is accomplished that designs of significant scale will be possible.

Synthetic biologists at the Massachusetts Institute of Technology (Cambridge) have adapted a Tecan (Männedorf, Switzerland) Freedom EVO workstation to help them in the development of genetic circuits. By automating laborious liquid handling protocols, the platform has increased throughput from just a few samples to hundreds of experiments a day.

The Tecan Freedom EVO series offers worktables with building-block modularity that ensures precision, reliable liquid handling, and easy-to-use robotics. Each platform can be combined with a wide choice of robotic arms, liquid handling tools, and application options powered by straightforward software that can be programmed to meet the needs of each individual laboratory. The EVO platform allows a choice of pipetting technologies on the same platform, including the possibility of combining both air and liquid displacement on a single workstation.

"We specifically chose a Tecan system for this application because the software and hardware are easy to extend, and we wanted the flexibility to experiment with different combinations of modules," said Dr. Jonathan Babb, a post-doctoral researcher at the Massachusetts Institute of Technology. "The Freedom EVOware software has an open architecture, making it easy to write and develop scripts and connect the instrument to our own systems and software, and the design of the hardware undoubtedly helps with the integration of our own modules and apparatus onto the worktable. For example, we wanted to be able to store enzymes at -20 degrees Celsius on the deck, and were able to get an automation-friendly chiller that could do this at fairly low cost, without having to make any major modifications to the platform. We have also been able to devise our own colony picking procedures for cell-based screening, and to set up and run an ordinary, low-cost gel station on the platform. The Freedom EVO is able to automatically load and run gels on the gel station, despite the lack of a communication port on this device, eliminating the need for a lot of expensive additional hardware. The flexibility and programmability of the Freedom EVO are invaluable for this, allowing us to rapidly develop in-house solutions and create the elaborate algorithms that are required to perform the many different steps that are necessary for the assembly of genetic circuits. We have successfully demonstrated that every step in the process can be automated and run completely unattended, and are now scaling up to high throughput mode, which will see multiple 96-well plates processed per day."

Related Links:
Massachusetts Institute of Technology
Tecan


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.