We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Picosecond Ultrasonics Probe Human Cells

By LabMedica International staff writers
Posted on 13 Feb 2013
Print article
French researchers have employed high-frequency sound waves to examine the viscosity and stiffness of the nuclei of individual human cells. The scientists foresee that the probe could ultimately help resolve questions such as how cells bind to medical implants and why healthy cells become cancerous.

“We have developed a new noncontact, noninvasive tool to measure the mechanical properties of cells at the sub-cell scale,” stated Bertrand Audoin, a professor in the mechanics laboratory at the University of Bordeaux (France). “This can be useful to follow cell activity or identify cell disease.” The research was presented at the 57th annual meeting of the Biophysical Society (BPS), held February 2-6, 2013, in Philadelphia (PA, USA).

The technology that was used, called picosecond ultrasonics, was first applied in the electronics industry in the mid-1980s as a way to gauge the thickness of semiconductor chip layers. Prof. Audoin and his colleagues, in collaboration with a research group in biomaterials led by Marie-Christine Durrieu from the Institute of Chemistry & Biology of Membranes & Nano-objects at Bordeaux University, modified picosecond ultrasonics to research living cells. They grew cells on a metal plate and then flashed the cell-metal interface with an ultra-short laser pulse to generate high-frequency sound waves. Another laser measured how the sound pulse propagated through the cells, providing the investigators with insights into the mechanical characteristics of the individual cell components.

“The higher the frequency of sound you create, the smaller the wavelength, which means the smaller the objects you can probe,” stated Prof. Audoin. “We use gigahertz waves, so we can probe objects on the order of a hundred nanometers.” For comparison, a cell’s nucleus is about 10,000-nm wide.

The scientists faced hurdles in applying picosecond ultrasonics to study biologic systems. One challenge was the fluid-like substance characteristics of the cell. “The light scattering process we use to detect the mechanical properties of the cell is much weaker than for solids,” said Prof. Audoin. “We had to improve the signal to noise ratio without using a high-powered laser that would damage the cell.” The scientists also faced the challenge of natural cell variation. “If you probe silicon, you do it once, and it’s finished,” noted Prof. Audoin. “If you probe the nucleus you have to do it hundreds of times and look at the statistics.”

The investigators developed techniques to overcome these challenges by testing their techniques on polymer capsules and plant cells before moving on to human cells. In the coming years, the team envisions studying cancer cells with sound. “A cancerous tissue is stiffer than a healthy tissue,” noted Prof. Audoin. “If you can measure the rigidity of the cells while you provide different drugs, you can test if you are able to stop the cancer at the cell scale.”

Related Links:
University of Bordeaux

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.