We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Network-Extracted Ontologies Organize Knowledge from Genomic Data

By LabMedica International staff writers
Posted on 24 Dec 2012
Print article
Converting huge amounts of genomic information into meaningful data about cellular processes is one of the biggest challenges of bioinformatics, and has great implications for the fields of human biology and medicine. Scientists have now devised new technology that generates a computational model of the cell from vast networks of gene and protein interactions, learning how genes and proteins connect to form higher-level cellular processes.

The study’s findings were published in the December 16, 2012, advance online publication of the journal Nature Biotechnology. “Our method creates ontology, or a specification of all the major players in the cell and the relationships between them,” said first author Janusz Dutkowski, PhD, postdoctoral researcher in the University of California (UC), San Diego School of Medicine (USA). It utilizes knowledge about how genes and proteins interact with each other and automatically organizes these data to form a comprehensive catalog of gene functions, cellular components, and mechanisms.

“What’s new about our ontology is that it is created automatically from large datasets. In this way, we see not only what is already known, but also potentially new biological components and processes--the bases for new hypotheses,” said Dr. Dutkowski.

Originally designed by philosophers attempting to clarify the nature of life, ontologies are now widely used to compress everything known about a subject in a hierarchy of terms and relationships. Intelligent information systems, such as iPhone’s (developed by Apple, Inc. Cupertino, CA, USA) Siri, are constructed on ontologies to enable reasoning about real life. Ontologies are also used by scientists to structure knowledge about topics such as bioactive compounds, taxonomy, anatomy and development, disease, and clinical diagnosis.

A gene ontology (GO) exists as well, constructed over the 10 years through a joint effort of hundreds of scientists. It is considered the gold standard for determining cell structure and gene function, containing 34,765 terms and 64,635 hierarchical relations annotating genes from more than 80 species.

“GO is very influential in biology and bioinformatics, but it is also incomplete and hard to update based on new data,” said senior author Trey Ideker, PhD, chief of the division of genetics in the School of Medicine and professor of bioengineering in UC San Diego’s Jacobs School of Engineering.

“This is expert knowledge based upon the work of many people over many, many years,” said Dr. Ideker, who is also lead investigator of the National Resource for Network Biology, based at UC San Diego. “A fundamental problem is consistency. People do things in different ways, and that impacts what findings are incorporated into GO and how they relate to other findings. The approach we have proposed is a more objective way to determine what's known and uncover what’s new.”

Drs. Dutkowski, Ideker, and colleagues, in their report, exploited the surging capacity and utility of new technologies such as high-throughput assays and bioinformatics to create elaborately detailed datasets describing complex biologic networks. To evaluate this application, the scientists gathered multiple such datasets, applied their technique, and then compared the resulting “network-extracted ontology” to the existing GO. They discovered that their ontology captured most of the known cellular components, in addition to many more terms and relationships, which then triggered updates of the existing GO.

Neither Dr. Ideker nor Dr. Dutkowski say the new approach is intended to replace the current GO. Instead, they foresee it as adjunct high-tech model that identifies both known and uncharacterized biologic components stemming directly from data, something the current GO does not do well. Furthermore, they reported that a network-extracted ontology can be constantly updated and modified with every new dataset, placing scientists closer to the complete model of the cell.

Related Links:
University of California, San Diego School of Medicine



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.