We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Stems Cells Successfully Transplanted onto Human Cornea

By LabMedica International staff writers
Posted on 30 Apr 2012
Print article
Scientists for the first time successfully cultivated human embryonic stem cells (hESCs) on damaged human corneas. The procedure may in the future lead to removal of the current dependence on donated corneas of which there continues to be a shortage.

Of the approximately 100,000 corneal transplantations carried out worldwide each year, about 500 take place in Sweden, many of which are carried out at the ophthalmology clinic at Sahlgrenska University Hospital (Mölndal, Sweden). The damaged and cloudy cornea that is turning the patient blind is replaced with a healthy, transparent one. In collaboration with scientists at the Sahlgrenska Academy of the University of Gothenburg (Sweden) and others, defective corneas obtained from the clinic were used in a study to investigate whether cells originating from hESCs could be successfully transplanted onto a partially wounded human cornea, and to examine the ability of the transplanted cells to further differentiate into corneal epithelial-like cells. It is the epithelial cells that maintain the transparency of the cornea.

The method involved in vitro transplantation of differentiated hESCs onto a human corneal button (without limbus) from which the epithelial layer was partially removed. The cells were cultured on Bowman's membrane and the culture dynamics were documented in a time-lapse system. The transplanted cells originated from a genetically engineered hESC line that expresses green fluorescent protein, which facilitated their identification. To detect differentiation into corneal epithelial-like cells, the transplanted cells were analyzed periodically for several days by immunohistochemistry using antibodies specific for relevant markers. The transplanted cells established and expanded on Bowman's membrane, forming a 1-4 cell layer surrounded by host corneal epithelial cells, and expression of a corneal marker began to appear 3 days after transplantation.

The success of these experiments represents an important step towards replacing donated corneas with corneas cultivated from stem cells. “Similar experiments have been carried out on animals, but this is the first time that stem cells have been grown on damaged human corneas. It means that we have taken the first step towards being able to use stem cells to treat damaged corneas,” said Charles Hanson, first author of the study and Associate Professor at the Sahlgrenska Academy.

“If we can establish a routine method for this, the availability of material for patients who need a new cornea will be essentially unlimited. Both the surgical procedures and the aftercare will also become much more simple,” added Ulf Stenevi, senior author of the study and Professor at the Sahlgrenska Academy.

The study was published in the journal Acta Ophthalmologica online ahead of print January 26, 2012.

Related Links:
Sahlgrenska Academy, University of Gothenburg
Sahlgrenska University Hospital

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.