We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Differential Gene Expression Found in Normal and Hypertensive Kidneys

By LabMedica International staff writers
Posted on 22 Nov 2011
Print article
In a comparison of gene expression in kidney tissues isolated from patients with hypertension and controls with normal blood pressure researchers found 14 genes and 11 miRNAs (microRNAs) that were differentially expressed in the medulla.

Investigators at the University of Leicester (United Kingdom) and colleagues from Poland and Australia analyzed tissue samples selected from 15 patients known to have high blood pressure, along with seven patients with normal blood pressure who were used as the control group for the study. The samples of human kidneys were stored in the Silesian Renal Tissue Bank (SRTB), and came from Polish males, individuals of white European ancestry.

Results of microarray analysis published in the October 31, 2011, online edition of the journal Hypertension revealed 14 genes and 11 miRNAs that were differentially expressed in the kidney medulla. Two of the miRNAs, which had lower levels of expression in the tissues from the hypertension patients, were linked to renin expression. Inhibition of miRNAs that reduce renin synthesis causes increased expression of renin activity. An overactive renin-angiotension system leads to vasoconstriction and retention of sodium and water. These effects lead to hypertension.

“I am very excited about this publication,” said contributing author Dr. Maciej Tomaszewski, senior clinical lecturer in cardiovascular medicine at the University of Leicester. “Renin is one of the most important contributors to blood pressure regulation. The novel insights into its expression within the human kidney from this study open up new avenues for the development of new antihypertensive medications. The collection of hypertensive and normotensive kidneys is available for our studies in Leicester thanks to a long-term international collaboration. We will continue using this unique research resource in our further studies to decipher the genetic background of human hypertension.”

Related Links:
University of Leicester



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.