We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Experimental Drug Shows Promise for Treating Small-Cell Lung Cancer

By LabMedica International staff writers
Posted on 30 Nov 2009
Print article
Cancer researchers have demonstrated that an experimental drug could successfully eliminate tumors caused by small-cell lung cancer (SCLC) in two different mouse models of the disease.

Lung cancer is the most commonly fatal type of cancer, and small-cell lung cancer is perhaps its deadliest form. SCLC usually responds initially to chemotherapy, but rapidly relapses to a resistant form with an overall survival rate of less than 5%.

Previous studies had shown that fibroblast growth factor-2 (FGF-2) induced proliferation and resistance to chemotherapy in SCLC cells. To capitalize on these findings investigators at Imperial College London (United Kingdom) evaluated the performance of the experimental drug PD173074, a protein kinase inhibitor and angiogenesis inhibitor that blocks the FGF-2 receptor, in two different mouse models of human SCLC.

Results published in the November 15, 2009, issue of the journal Cancer Research revealed that in the first model PD173074 administered on its own eliminated tumors in 50% of the mice, and these mice remained disease-free for at least one year. In the second model, both PD173074 and the traditional chemotherapy agent cisplatin given separately slowed tumor growth. Yet, when the drugs were combined, they acted significantly faster than either drug individually.

At the molecular level, the investigators found that the beneficial effects of PD173074 treatment were not a consequence of its known antiangiogenic activity, but instead correlated with increased apoptosis (caspase 3 and cytokeratin 18 cleavage).

"Lung cancer is the most common cancer killer in the world and over 100 people in the UK are diagnosed with the disease every day. Around one in five of those people will have small-cell lung cancer. Although it responds to chemotherapy initially, the tumors soon become resistant to treatment and sadly nearly all people with the disease do not survive," explained senior author Dr. Michael Seckl, professor of molecular oncology at Imperial College London.

"We urgently need to develop new treatments for this disease. Our new research in mice suggests that it may be possible to develop the drug PD173074 into a new targeted therapy for small-cell lung cancer," said Dr. Seckl. "We hope to take this drug, or a similar drug that also stops FGF-2 from working, into clinical trials next year to see if it is a successful treatment for lung cancer in humans. An added bonus of this drug is that it could be taken orally, which would make it less invasive than some other forms of cancer therapy."

Related Links:
Imperial College London


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.