Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Treatment of Parkinson's Disease May Depend on Augmented Enzyme Activity

By BiotechDaily International staff writers
Posted on 07 Jul 2009
A naturally occurring brain enzyme has been identified that promotes the breakdown of the toxic protein clumps that characterize familial Parkinson's disease (PD) and some sporadic forms of the disease.

Dominantly inherited mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are the most common cause of familial PD and have also been identified in individuals with sporadic PD. Although the exact cellular function of LRRK2 remains unknown, most PD-linked mutations appear to be toxic to cells in culture via mechanisms that depend on the kinase activity of LRRK2 or on the formation of cytoplasmic inclusions.

Investigators at the University of Texas Southwestern Medical Center (Dallas, USA) reported in the June 17, 2009, online edition of the journal Public Library of Science (PLoS) One that they had identified an E3 ubiquitin ligase known as CHIP, which physically associated with LRRK2. CHIP regulated the cellular abundance of LRRK2 by forming a complex with LRRK2 and another protein; Hsp90. CHIP regulated LRRK2 through a process of ubiquitination and proteasome-dependent degradation.

"CHIP may be a useful therapeutic target for treatments to break down LRRK2 in people with Parkinson's," said senior author Dr. Matthew Goldberg, assistant professor of neurology and psychiatry at the University of Texas Southwestern Medical Center. "Our next step is to identify cellular mechanisms that signal LRRK2 to be degraded by CHIP or by other mechanisms. Because LRRK2 mutations are believed to cause Parkinsonism by increasing the activity of LRRK2, enhancing the normal mechanisms that target LRRK2 for degradation by CHIP may be therapeutically beneficial."
"There are currently enormous efforts to identify potential therapies based on inhibiting this mutated protein," said Dr. Goldberg. "Our paper is a major advance because we identify a protein that binds to the mutated protein and promotes its breakdown."

Related Links:
University of Texas Southwestern Medical Center





comments powered by Disqus

Channels

Drug Discovery

view channel

Molecule in Green Tea Used as Carrier for Anticancer Proteins

A molecule that is a key ingredient in green tea can be employed as a carrier for anticancer proteins, forming a stable and effective therapeutic nanocomplex. This new discovery could help to construct better drug-delivery systems. Some cancer treatments depend on medication comprising the therapeutic drug and a carrier... Read more

Lab Technologies

view channel
Image: The UC Santa Cruz Ebola Genome Portal contains links to the newly created Ebola browser and to scientific literature on the deadly virus (Photo courtesy of UCSC).

Ebola Genome Browser Now Online to Help Scientists’ Respond to Crisis

A US genomics institute has just released a new Ebola genome browser to help international researchers develop a vaccine and antiserum to help stop the spread of the Ebolavirus. The investigators led... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.